LIPIcs.STACS.2009.1835.pdf
- Filesize: 233 kB
- 12 pages
We present the first polynomial-time approximation schemes (PTASes) for the following subset-connectivity problems in edge-weighted graphs of bounded genus: Steiner tree, low-connectivity survivable-network design, and subset TSP. The schemes run in $O(n \log n)$ time for graphs embedded on both orientable and non-orientable surfaces. This work generalizes the PTAS frameworks of Borradaile, Klein, and Mathieu (2007 and 2006) from planar graphs to bounded-genus graphs: any future problems shown to admit the required structure theorem for planar graphs will similarly extend to bounded-genus graphs.
Feedback for Dagstuhl Publishing