More Haste, Less Waste: Lowering the Redundancy in Fully Indexable Dictionaries

Authors Roberto Grossi, Alessio Orlandi, Rajeev Raman, S. Srinivasa Rao



PDF
Thumbnail PDF

File

LIPIcs.STACS.2009.1847.pdf
  • Filesize: 197 kB
  • 12 pages

Document Identifiers

Author Details

Roberto Grossi
Alessio Orlandi
Rajeev Raman
S. Srinivasa Rao

Cite As Get BibTex

Roberto Grossi, Alessio Orlandi, Rajeev Raman, and S. Srinivasa Rao. More Haste, Less Waste: Lowering the Redundancy in Fully Indexable Dictionaries. In 26th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 3, pp. 517-528, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009) https://doi.org/10.4230/LIPIcs.STACS.2009.1847

Abstract

We consider the problem of representing, in a compressed format, a bit-vector~$S$ of $m$ bits with $n$ $\mathbf{1}$s, supporting the following operations, where $b \in \{ \mathbf{0}, \mathbf{1} \}$:
\begin{itemize}
\item $\mathtt{rank}_b(S,i)$ returns the number of occurrences of bit $b$ in the prefix $S\left[1..i\right]$;
\item $\mathtt{select}_b(S,i)$ returns the position of the $i$th occurrence of bit $b$ in $S$.
\end{itemize}
Such a data structure is called \emph{fully indexable dictionary (\textsc{fid})} [Raman, Raman, and Rao, 2007], and is at least as powerful as predecessor data structures. Viewing $S$ as a set $X = \{ x_1, x_2, \ldots, x_n \}$ of $n$ distinct integers drawn from a universe $[m] = \{1, \ldots, m\}$, the predecessor of integer $y \in [m]$ in $X$ is given by $\ensuremath{\mathtt{select}^{}_1}(S, \ensuremath{\mathtt{rank}_1}(S,y-1))$. {\textsc{fid}}s have many applications in succinct and compressed data structures, as they are often involved in the construction of succinct representation for a variety of abstract data types.

Our focus is on space-efficient {\textsc{fid}}s on the \textsc{ram} model with word size $\Theta(\lg m)$ and constant time for all operations, so that the time cost is independent of the input size.

Given the bitstring $S$ to be encoded, having length $m$ and containing $n$ ones, the minimal amount of information that needs to be stored is $B(n,m) = \lceil \log {{m}\choose{n}} \rceil$. The state of the art in building a \textsc{fid}\ for~$S$ is given in~\mbox{}[P\v{a}tra\c{s}cu, 2008] using $B(m,n)+O( m / ( (\log m/ t) ^t) ) + O(m^{3/4}) $ bits, to support the operations in $O(t)$ time.

Here, we propose a parametric data structure exhibiting a time/space trade-off such that, for any real constants $0 < \delta \leq 1/2$, $0 < \varepsilon \leq 1$, and integer $s > 0$, it uses
\[ B(n,m) + O\left(n^{1+\delta} + n \left(\frac{m}{n^s}\right)^\varepsilon\right) \]
bits and performs all the operations in time $O(s\delta^{-1} + \varepsilon^{-1})$. The improvement is twofold: our redundancy can be lowered parametrically and, fixing $s = O(1)$, we get a constant-time \textsc{fid}\ whose space is $B(n,m) + O(m^\varepsilon/\mathrm{poly}(n))$ bits, for sufficiently large $m$. This is a significant improvement compared to the previous bounds for the general case.

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail