DagSemProc.09421.5.pdf
- Filesize: 196 kB
- 9 pages
We study the problem of learning parity functions that depend on at most $k$ variables ($k$-parities) attribute-efficiently in the mistake-bound model. We design a simple, deterministic, polynomial-time algorithm for learning $k$-parities with mistake bound $O(n^{1-frac{c}{k}})$, for any constant $c > 0$. This is the first polynomial-time algorithms that learns $omega(1)$-parities in the mistake-bound model with mistake bound $o(n)$. Using the standard conversion techniques from the mistake-bound model to the PAC model, our algorithm can also be used for learning $k$-parities in the PAC model. In particular, this implies a slight improvement on the results of Klivans and Servedio cite{rocco} for learning $k$-parities in the PAC model. We also show that the $widetilde{O}(n^{k/2})$ time algorithm from cite{rocco} that PAC-learns $k$-parities with optimal sample complexity can be extended to the mistake-bound model.
Feedback for Dagstuhl Publishing