We revisit several maximization problems for geometric networks design under the non-crossing constraint, first studied by Alon, Rajagopalan and Suri (ACM Symposium on Computational Geometry, 1993). Given a set of $n$ points in the plane in general position (no three points collinear), compute a longest non-crossing configuration composed of straight line segments that is: (a) a matching (b) a Hamiltonian path (c) a spanning tree. Here we obtain new results for (b) and (c), as well as for the Hamiltonian cycle problem: (i) For the longest non-crossing Hamiltonian path problem, we give an approximation algorithm with ratio $\frac{2}{\pi+1} \approx 0.4829$. The previous best ratio, due to Alon et al., was $1/\pi \approx 0.3183$. Moreover, the ratio of our algorithm is close to $2/\pi$ on a relatively broad class of instances: for point sets whose perimeter (or diameter) is much shorter than the maximum length matching. The algorithm runs in $O(n^{7/3}\log{n})$ time. (ii) For the longest non-crossing spanning tree problem, we give an approximation algorithm with ratio $0.502$ which runs in $O(n \log{n})$ time. The previous ratio, $1/2$, due to Alon et al., was achieved by a quadratic time algorithm. Along the way, we first re-derive the result of Alon et al. with a faster $O(n \log{n})$-time algorithm and a very simple analysis. (iii) For the longest non-crossing Hamiltonian cycle problem, we give an approximation algorithm whose ratio is close to $2/\pi$ on a relatively broad class of instances: for point sets with the product $\bf{\langle}$~diameter~$\times$ ~convex hull size $\bf{\rangle}$ much smaller than the maximum length matching. The algorithm runs in $O(n^{7/3}\log{n})$ time. No previous approximation results were known for this problem.
@InProceedings{dumitrescu_et_al:LIPIcs.STACS.2010.2465, author = {Dumitrescu, Adrian and T\'{o}th, Csaba D.}, title = {{Long Non-crossing Configurations in the Plane}}, booktitle = {27th International Symposium on Theoretical Aspects of Computer Science}, pages = {311--322}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-16-3}, ISSN = {1868-8969}, year = {2010}, volume = {5}, editor = {Marion, Jean-Yves and Schwentick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2465}, URN = {urn:nbn:de:0030-drops-24655}, doi = {10.4230/LIPIcs.STACS.2010.2465}, annote = {Keywords: Longest non-crossing Hamiltonian path, longest non-crossing Hamiltonian cycle, longest non-crossing spanning tree, approximation algorithm.} }