In this paper we consider the problem of reconstructing a hidden weighted hypergraph of constant rank using additive queries. We prove the following: Let $G$ be a weighted hidden hypergraph of constant rank with~$n$ vertices and $m$ hyperedges. For any $m$ there exists a non-adaptive algorithm that finds the edges of the graph and their weights using $$ O\left(\frac{m\log n}{\log m}\right) $$ additive queries. This solves the open problem in [S. Choi, J. H. Kim. Optimal Query Complexity Bounds for Finding Graphs. {\em STOC}, 749--758, 2008]. When the weights of the hypergraph are integers that are less than $O(poly(n^d/m))$ where $d$ is the rank of the hypergraph (and therefore for unweighted hypergraphs) there exists a non-adaptive algorithm that finds the edges of the graph and their weights using $$ O\left(\frac{m\log \frac{n^d}{m}}{\log m}\right). $$ additive queries. Using the information theoretic bound the above query complexities are tight.
@InProceedings{bshouty_et_al:LIPIcs.STACS.2010.2496, author = {Bshouty, Nader H. and Mazzawi, Hanna}, title = {{Optimal Query Complexity for Reconstructing Hypergraphs}}, booktitle = {27th International Symposium on Theoretical Aspects of Computer Science}, pages = {143--154}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-16-3}, ISSN = {1868-8969}, year = {2010}, volume = {5}, editor = {Marion, Jean-Yves and Schwentick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2496}, URN = {urn:nbn:de:0030-drops-24968}, doi = {10.4230/LIPIcs.STACS.2010.2496}, annote = {Keywords: Query complexity, hypergraphs} }
Feedback for Dagstuhl Publishing