Listing all maximal cliques in sparse graphs in near-optimal time

Authors David Eppstein, Maarten Löffler, Darren Strash



PDF
Thumbnail PDF

File

DagSemProc.10441.2.pdf
  • Filesize: 405 kB
  • 14 pages

Document Identifiers

Author Details

David Eppstein
Maarten Löffler
Darren Strash

Cite As Get BibTex

David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in sparse graphs in near-optimal time. In Exact Complexity of NP-hard Problems. Dagstuhl Seminar Proceedings, Volume 10441, pp. 1-14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011) https://doi.org/10.4230/DagSemProc.10441.2

Abstract

The degeneracy of an $n$-vertex graph $G$ is the smallest number $d$ such that every subgraph of $G$ contains a vertex of degree at most $d$. We show that there exists a nearly-optimal fixed-parameter tractable algorithm for enumerating all maximal cliques, parametrized by degeneracy. To achieve this result, we modify the classic Bron--Kerbosch algorithm and show that it runs in time $O(dn3^{d/3})$. We also provide matching upper and lower bounds showing that the largest possible number of maximal cliques in an $n$-vertex graph with degeneracy $d$ (when $d$ is a multiple of 3 and $nge d+3$) is $(n-d)3^{d/3}$. Therefore, our algorithm matches the $Theta(d(n-d)3^{d/3})$ worst-case output size of the problem whenever $n-d=Omega(n)$.

Subject Classification

Keywords
  • Clique
  • backtracking
  • degeneracy
  • worst-case optimality

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail