LIPIcs.STACS.2011.495.pdf
- Filesize: 0.67 MB
- 12 pages
In the conversion of finite automata to regular expressions, an exponential blowup in size can generally not be avoided. This is due to graph-structural properties of automata which cannot be directly encoded by regular expressions and cause the blowup combinatorially. In order to identify these structures, we generalize the class of arc-series-parallel digraphs to the acyclic case. The resulting digraphs are shown to be reversibly encoded by linear-sized regular expressions. We further derive a characterization of our new class by a finite set of forbidden minors and argue that these minors constitute the primitives causing the blowup in the conversion from automata to expressions.
Feedback for Dagstuhl Publishing