LIPIcs.STACS.2012.396.pdf
- Filesize: 0.65 MB
- 12 pages
We show that the separation property fails for the classes Sigma_n of the Rabin-Mostowski index hierarchy of alternating automata on infinite trees. This extends our previous result (obtained with Szczepan Hummel) on the failure of the separation property for the class Sigma_2 (i.e., for co-Buchi sets). It remains open whether the separation property does hold for the classes Pi_n of the index hierarchy. To prove our result, we first consider the Rabin-Mostowski index hierarchy of deterministic automata on infinite words, for which we give a complete answer (generalizing previous results of Selivanov): the separation property holds for Pi_n and fails for Sigma_n-classes. The construction invented for words turns out to be useful for trees via a suitable game.
Feedback for Dagstuhl Publishing