LIPIcs.CSL.2012.411.pdf
- Filesize: 0.52 MB
- 15 pages
In this paper we extend the Finite Rank Theorem for connection matrices of graph parameters definable in Monadic Second Order Logic with modular counting CMSOL of B. Godlin, T. Kotek and J.A. Makowsky (2008 and 2009), and demonstrate its vast applicability in simplifying known and new non-definability results of graph properties and finding new non-definability results for graph parameters. We also prove a Feferman-Vaught Theorem for the logic CFOL, First Order Logic with the modular counting quantifiers.
Feedback for Dagstuhl Publishing