LIPIcs.FSTTCS.2012.325.pdf
- Filesize: 470 kB
- 12 pages
In this paper we study the k-delivery traveling salesman problem (TSP)on trees, a variant of the non-preemptive capacitated vehicle routing problem with pickups and deliveries. We are given n pickup locations and n delivery locations on trees, with exactly one item at each pickup location. The k-delivery TSP is to find a minimum length tour by a vehicle of finite capacity k to pick up and deliver exactly one item to each delivery location. We show that an optimal solution for the k-delivery TSP on paths can be found that allows succinct representations of the routes. By exploring the symmetry inherent in the k-delivery TSP, we design a 5/3-approximation algorithm for the k-delivery TSP on trees of arbitrary heights. The ratio can be improved to (3/2 - 1/2k) for the problem on trees of height 2. The developed algorithms are based on the following observation: under certain conditions, it makes sense for a non-empty vehicle to turn around and pick up additional loads.
Feedback for Dagstuhl Publishing