Computing cutwidth and pathwidth of semi-complete digraphs via degree orderings

Author Michal Pilipczuk



PDF
Thumbnail PDF

File

LIPIcs.STACS.2013.197.pdf
  • Filesize: 0.58 MB
  • 12 pages

Document Identifiers

Author Details

Michal Pilipczuk

Cite As Get BibTex

Michal Pilipczuk. Computing cutwidth and pathwidth of semi-complete digraphs via degree orderings. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 197-208, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013) https://doi.org/10.4230/LIPIcs.STACS.2013.197

Abstract

The notions of cutwidth and pathwidth of digraphs play a central role in the containment theory for tournaments, or more generally semi-complete digraphs, developed in a recent series of papers by Chudnovsky, Fradkin, Kim, Scott, and Seymour (Maria Chudnovsky, Alexandra Fradkin, and Paul Seymour, 2012; Maria Chudnovsky, Alex Scott, and Paul Seymour, 2011; Maria Chudnovsky and Paul D. Seymour, 2011; Alexandra Fradkin and Paul Seymour, 2010; Alexandra Fradkin and Paul Seymour, 2011; Ilhee Kim and Paul Seymour, 2012). In this work we introduce a new approach to computing these width measures on semi-complete digraphs, via degree orderings. Using the new technique we are able to reprove the main results of (Maria Chudnovsky, Alexandra Fradkin, and Paul Seymour, 2012; Alexandra Fradkin and Paul Seymour, 2011) in a unified and significantly simplified way, as well as obtain new results. First, we present polynomial-time approximation algorithms for both cutwidth and pathwidth, faster and simpler than the previously known ones; the most significant improvement is in case of pathwidth, where instead of previously known O(OPT)-approximation in fixed-parameter tractable time (Fedor V. Fomin and Michal Pilipczuk, 2013) we obtain a constant-factor approximation in polynomial time. Secondly, by exploiting the new set of obstacles for cutwidth and pathwidth, we show that topological containment and immersion in semi-complete digraphs can be tested in single-exponential fixed-parameter tractable time. Finally, we present how the new approach can be used to obtain exact fixed-parameter tractable algorithms for cutwidth and pathwidth, with single-exponential running time dependency on the optimal width.

Subject Classification

Keywords
  • semi-complete digraph
  • tournament
  • pathwidth
  • cutwidth

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail