Fast Implementation of the Scalable Video Coding Extension of the H.264/AVC Standard

Authors Xin Lu, Graham R. Martin



PDF
Thumbnail PDF

File

OASIcs.ICCSW.2013.65.pdf
  • Filesize: 0.5 MB
  • 8 pages

Document Identifiers

Author Details

Xin Lu
Graham R. Martin

Cite As Get BibTex

Xin Lu and Graham R. Martin. Fast Implementation of the Scalable Video Coding Extension of the H.264/AVC Standard. In 2013 Imperial College Computing Student Workshop. Open Access Series in Informatics (OASIcs), Volume 35, pp. 65-72, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013) https://doi.org/10.4230/OASIcs.ICCSW.2013.65

Abstract

In order to improve coding efficiency in the scalable extension of H.264/AVC, an inter-layer prediction mechanism is incorporated. This exploits as much lower layer information as possible to inform the process of coding the enhancement layer(s). However it also greatly increases the computational complexity. In this paper, a fast mode decision algorithm for efficient implementation of the SVC encoder is described. The proposed algorithm not only considers inter-layer correlation but also fully exploits both spatial and temporal correlation as well as an assessment of macroblock texture. All of these factors are organised within a hierarchical structure in the mode decision process. At each level of the structure, different strategies are implemented to eliminate inappropriate candidate modes. Simulation results show that the proposed algorithm reduces encoding time by up to 85% compared with the JSVM 9.18 implementation. This is achieved without any noticeable degradation in rate distortion.

Subject Classification

Keywords
  • Fast mode selection
  • Inter-layer prediction
  • Scalable Video Coding (SVC)
  • SVC extension of H.264/AVC.

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail