LIPIcs.TYPES.2013.1.pdf
- Filesize: 0.52 MB
- 23 pages
We introduce update monads as a generalization of state monads. Update monads are the compatible compositions of reader and writer monads given by a set and a monoid. Distributive laws between such monads are given by actions of the monoid on the set. We also discuss a dependently typed generalization of update monads. Unlike simple update monads, they cannot be factored into a reader and writer monad, but rather into similarly looking relative monads. Dependently typed update monads arise from cointerpreting directed containers, by which we mean an extension of an interpretation of the opposite of the category of containers into the category of set functors.
Feedback for Dagstuhl Publishing