LIPIcs.SOCG.2015.111.pdf
- Filesize: 0.68 MB
- 15 pages
We resolve an open problem due to Tetsuo Asano, showing how to compute the shortest path in a polygon, given in a read only memory, using sublinear space and subquadratic time. Specifically, given a simple polygon P with n vertices in a read only memory, and additional working memory of size m, the new algorithm computes the shortest path (in P) in O(n^2 / m) expected time, assuming m = O(n / log^2 n). This requires several new tools, which we believe to be of independent interest. Specifically, we show that violator space problems, an abstraction of low dimensional linear-programming (and LP-type problems), can be solved using constant space and expected linear time, by modifying Seidel's linear programming algorithm and using pseudo-random sequences.
Feedback for Dagstuhl Publishing