LIPIcs.APPROX-RANDOM.2015.242.pdf
- Filesize: 0.62 MB
- 23 pages
In this paper we study terminal embeddings, in which one is given a finite metric (X,d_X) (or a graph G=(V,E)) and a subset K of X of its points are designated as terminals. The objective is to embed the metric into a normed space, while approximately preserving all distances among pairs that contain a terminal. We devise such embeddings in various settings, and conclude that even though we have to preserve approx |K| * |X| pairs, the distortion depends only on |K|, rather than on |X|. We also strengthen this notion, and consider embeddings that approximately preserve the distances between all pairs, but provide improved distortion for pairs containing a terminal. Surprisingly, we show that such embeddings exist in many settings, and have optimal distortion bounds both with respect to X \times X and with respect to K * X. Moreover, our embeddings have implications to the areas of Approximation and Online Algorithms. In particular, Arora et. al. devised an ~O(sqrt(log(r))-approximation algorithm for sparsest-cut instances with r demands. Building on their framework, we provide an ~O(sqrt(log |K|)-approximation for sparsest-cut instances in which each demand is incident on one of the vertices of K (aka, terminals). Since |K| <= r, our bound generalizes that of Arora et al.
Feedback for Dagstuhl Publishing