LIPIcs.CONCUR.2015.311.pdf
- Filesize: 0.49 MB
- 14 pages
A weighted timed game is a timed game with extra quantitative information representing e.g. energy consumption. Optimizing the weight for reaching a target is a natural question, which has already been investigated for ten years. Existence of optimal strategies is known to be undecidable in general, and only very restricted classes of games have been identified for which optimal weight and almost-optimal strategies can be computed. In this paper, we show that the value problem is undecidable in weighted timed games. We then introduce a large subclass of weighted timed games (for which the undecidability proof above applies), and provide an algorithm to compute arbitrary approximations of the value in such games. To the best of our knowledge, this is the first approximation scheme for an undecidable class of weighted timed games.
Feedback for Dagstuhl Publishing