Computing Argumentation with Matrices

Author Evgenios Hadjisoteriou



PDF
Thumbnail PDF

File

OASIcs.ICCSW.2015.29.pdf
  • Filesize: 424 kB
  • 8 pages

Document Identifiers

Author Details

Evgenios Hadjisoteriou

Cite As Get BibTex

Evgenios Hadjisoteriou. Computing Argumentation with Matrices. In 2015 Imperial College Computing Student Workshop (ICCSW 2015). Open Access Series in Informatics (OASIcs), Volume 49, pp. 29-36, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015) https://doi.org/10.4230/OASIcs.ICCSW.2015.29

Abstract

Abstract argumentation frameworks with finitely many arguments can be presented in matrix form. For this reason, the strengths and weaknesses of matrix operations are migrated from a mathematical representation to a computer science interpretation. We present matrix operation algorithms that can answer whether a given set of arguments is part of an argumentation extension.

Subject Classification

Keywords
  • Argumentation
  • Semantics
  • Extension
  • Algorithm
  • Matrix

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumentation semantics. Knowledge Eng. Review, 26(4):365-410, 2011. Google Scholar
  2. Martin W. A. Caminada and Dov M. Gabbay. A logical account of formal argumentation. Studia Logica, 93(2-3):109-145, 2009. Google Scholar
  3. Günther Charwat, Wolfgang Dvorák, Sarah Alice Gaggl, Johannes Peter Wallner, and Stefan Woltran. Methods for solving reasoning problems in abstract argumentation - A survey. Artif. Intell., 220:28-63, 2015. Google Scholar
  4. Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic programs and default theories. Theor. Comput. Sci., 170(1-2):209-244, 1996. Google Scholar
  5. Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321-358, 1995. Google Scholar
  6. Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical argumentation. Artif. Intell., 171(10-15):642-674, 2007. Google Scholar
  7. Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. ASPARTIX: implementing argumentation frameworks using answer-set programming. In Logic Programming, 24th International Conference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings, pages 734-738, 2008. Google Scholar
  8. Stefan Ellmauthaler and Hannes Strass. The DIAMOND system for computing with abstract dialectical frameworks. In Computational Models of Argument - Proceedings of COMMA 2014, Atholl Palace Hotel, Scottish Highlands, UK, September 9-12, 2014, pages 233-240, 2014. Google Scholar
  9. S. Modgil and Martin W.A. Caminada. Proof theories and algorithms for abstract argumentation frameworks. In I. Rahwan and G. Simari, editors, Argumentation in Artif. Intell., pages 105-129. Springer Publishing Company, Incorporated, 2009. Google Scholar
  10. Christos H Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003. Google Scholar
  11. Gilbert W Stewart. Introduction to matrix computations. Academic Press, 1973. Google Scholar
  12. Andrew James Stothers. On the complexity of matrix multiplication. PhD thesis, The University of Edinburgh, 2010. Google Scholar
  13. A. Torres. Negation as failure to support. In L. M. Pereira and A. Nerode, editors, Logic Programming and Non-Monotonic Reasoning: Proc. of the Second International Workshop. Cambridge, pages 223-243. MIT Press, MA, 1993. Google Scholar
  14. Y. Wu and M.W.A. Caminada. A labelling-based justification status of arguments. Studies in Logic, 3(4):12-29, 2010. Google Scholar
  15. Yuming Xu. A matrix approach for computing extensions of argumentation frameworks. CoRR, abs/1209.1899, 2012. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail