Decoherence in Open Majorana Systems

Author Earl T. Campbell



PDF
Thumbnail PDF

File

LIPIcs.TQC.2015.111.pdf
  • Filesize: 1.83 MB
  • 16 pages

Document Identifiers

Author Details

Earl T. Campbell

Cite As Get BibTex

Earl T. Campbell. Decoherence in Open Majorana Systems. In 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 44, pp. 111-126, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015) https://doi.org/10.4230/LIPIcs.TQC.2015.111

Abstract

Coupling to a thermal bath leads to decoherence of stored quantum information. For a system of Gaussian fermions, the fermionic analog of linear or Gaussian optics, these dynamics can be elegantly and efficiently described by evolution of the system's covariance matrix. Taking both system and bath to be Gaussian fermionic, we observe that decoherence occurs at a rate that is independent of the bath temperature. Furthermore, we also consider a weak coupling regime where the dynamics are Markovian. We present a microscopic derivation of Markovian master equations entirely in the language of covariance matrices, where temperature independence remains manifest. This is radically different from behaviour seen in other scenarios, such as when fermions interact with a bosonic bath. Our analysis applies to many Majorana fermion systems that have been heralded as very robust, topologically protected, qubits. In these systems, it has been claimed that thermal decoherence can be exponentially suppressed by reducing temperature, but we find Gaussian decoherence cannot be cooled away.

Subject Classification

Keywords
  • Majorana
  • Topological
  • Gaussian
  • Thermalization
  • Decoherence

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail