LIPIcs.FSTTCS.2015.69.pdf
- Filesize: 0.6 MB
- 15 pages
Strategy Logic is a powerful specification language for expressing non-zero-sum properties of multi-player games. SL conveniently extends the logic ATL with explicit quantification and assignment of strategies. In this paper, we consider games over one-counter automata, and a quantitative extension 1cSL of SL with assertions over the value of the counter. We prove two results: we first show that, if decidable, model checking the so-called Boolean-goal fragment of 1cSL has non-elementary complexity; we actually prove the result for the Boolean-goal fragment of SL over finite-state games, which was an open question in [Mogavero et al. Reasoning about strategies: On the model-checking problem. ACM ToCL 15(4),2014]. As a first step towards proving decidability, we then show that the Boolean-goal fragment of 1cSL over one-counter games enjoys a nice periodicity property.
Feedback for Dagstuhl Publishing