The SUBSET FEEDBACK VERTEX SET problem generalizes the classical FEEDBACK VERTEX SET problem and asks, for a given undirected graph G=(V,E), a set S subseteq V, and an integer k, whether there exists a set X of at most k vertices such that no cycle in G-X contains a vertex of S. It was independently shown by Cygan et al. (ICALP'11, SIDMA'13) and Kawarabayashi and Kobayashi (JCTB'12) that SUBSET FEEDBACK VERTEX SET is fixed-parameter tractable for parameter k. Cygan et al. asked whether the problem also admits a polynomial kernelization. We answer the question of Cygan et al. positively by giving a randomized polynomial kernelization for the equivalent version where S is a set of edges. In a first step we show that EDGE SUBSET FEEDBACK VERTEX SET has a randomized polynomial kernel parameterized by |S|+k with O(|S|^2k) vertices. For this we use the matroid-based tools of Kratsch and Wahlstrom (FOCS'12). Next we present a preprocessing that reduces the given instance (G,S,k) to an equivalent instance (G',S',k') where the size of S' is bounded by O(k^4). These two results lead to a polynomial kernel for SUBSET FEEDBACK VERTEX SET with O(k^9) vertices.
@InProceedings{hols_et_al:LIPIcs.STACS.2016.43, author = {Hols, Eva-Maria C. and Kratsch, Stefan}, title = {{A Randomized Polynomial Kernel for Subset Feedback Vertex Set}}, booktitle = {33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)}, pages = {43:1--43:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-001-9}, ISSN = {1868-8969}, year = {2016}, volume = {47}, editor = {Ollinger, Nicolas and Vollmer, Heribert}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2016.43}, URN = {urn:nbn:de:0030-drops-57448}, doi = {10.4230/LIPIcs.STACS.2016.43}, annote = {Keywords: parameterized complexity, kernelization, subset feedback vertex set} }
Feedback for Dagstuhl Publishing