The CONSTRAINED BIPARTITE VERTEX COVER problem asks, for a bipartite graph G with partite sets A and B, and integers k_A and k_B, whether there is a vertex cover for G containing at most k_A vertices from A and k_B vertices from B. The problem has an easy kernel with 2 * k_A * k_B edges and 4 k_A * k_B vertices, based on the fact that every vertex in A of degree more than k_B has to be included in the solution, together with every vertex in B of degree more than k_A. We show that the number of vertices and edges in this kernel are asymptotically essentially optimal in terms of the product k_A * k_B. We prove that if there is a polynomial-time algorithm that reduces any instance (G,A,B,k_A,k_B) of CONSTRAINED BIPARTITE VERTEX COVER to an equivalent instance (G',A',B',k'_A,k'_B) such that k'_A in (k_A)^{O(1)}, k'_B in (k_B)^{O(1)}, and |V(G')| in O((k_A * k_B)^{1 - epsilon}), for some epsilon > 0, then NP subseteq coNP/poly and the polynomial-time hierarchy collapses. Using a different construction, we prove that if there is a polynomial-time algorithm that reduces any n-vertex instance into an equivalent instance (of a possibly different problem) that can be encoded in O(n^{2- epsilon}) bits, then NP subseteq coNP/poly.
@InProceedings{jansen:LIPIcs.STACS.2016.45, author = {Jansen, Bart M. P.}, title = {{Constrained Bipartite Vertex Cover: The Easy Kernel is Essentially Tight}}, booktitle = {33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)}, pages = {45:1--45:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-001-9}, ISSN = {1868-8969}, year = {2016}, volume = {47}, editor = {Ollinger, Nicolas and Vollmer, Heribert}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2016.45}, URN = {urn:nbn:de:0030-drops-57463}, doi = {10.4230/LIPIcs.STACS.2016.45}, annote = {Keywords: kernel lower bounds, constrained bipartite vertex cover} }
Feedback for Dagstuhl Publishing