In this work we study the relationship between size and treewidth of circuits computing variants of the element distinctness function. First, we show that for each n, any circuit of treewidth t computing the element distinctness function delta_n:{0,1}^n -> {0,1} must have size at least Omega((n^2)/(2^{O(t)}*log(n))). This result provides a non-trivial generalization of a super-linear lower bound for the size of Boolean formulas (treewidth 1) due to Neciporuk. Subsequently, we turn our attention to read-once circuits, which are circuits where each variable labels at most one input vertex. For each n, we show that any read-once circuit of treewidth t and size s computing a variant tau_n:{0,1}^n -> {0,1} of the element distinctness function must satisfy the inequality t * log(s) >= Omega(n/log(n)). Using this inequality in conjunction with known results in structural graph theory, we show that for each fixed graph H, read-once circuits computing tau_n which exclude H as a minor must have size at least Omega(n^2/log^{4}(n)). For certain well studied functions, such as the triangle-freeness function, this last lower bound can be improved to Omega(n^2/log^2(n)).
@InProceedings{deoliveiraoliveira:LIPIcs.STACS.2016.56, author = {de Oliveira Oliveira, Mateus}, title = {{Size-Treewidth Tradeoffs for Circuits Computing the Element Distinctness Function}}, booktitle = {33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)}, pages = {56:1--56:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-001-9}, ISSN = {1868-8969}, year = {2016}, volume = {47}, editor = {Ollinger, Nicolas and Vollmer, Heribert}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2016.56}, URN = {urn:nbn:de:0030-drops-57571}, doi = {10.4230/LIPIcs.STACS.2016.56}, annote = {Keywords: non-linear lower bounds, treewidth, element distinctness} }