DagRep.6.1.224.pdf
- Filesize: 0.97 MB
- 21 pages
Semiconductor industry is hitting the utilization wall and puts focus on parallel and heterogeneous many-core architectures. While continuous technological scaling enables the high integration of 100s-1000s of cores and, thus, enormous processing capabilities, the resulting power consumption per area (the power density) increases in an unsustainable way. With this density, the problem of Dark Silicon will become prevalent in future technology nodes: It will be infeasible to operate all on-chip components at full performance at the same time due to the thermal constraints (peak temperature, spatial and temporal thermal gradients etc.). However, this is not only an emerging threat for SoC and MPSoC designers, HPC faces a similar problem as well: The power supplied by the energy companies as well as the cooling capacity does not allow to run the entire machine at highest performance anymore. The goal of Dagstuhl Seminar 16052 "Dark Silicon: From Embedded to HPC Systems" was to increase the awareness of the research communities of those similarities and to work and explore common solutions based on more flexible thermal/power/resource management techniques both for runtime, design time as well as hybrid solutions.
Feedback for Dagstuhl Publishing