Excluded Grid Theorem: Improved and Simplified (Invited Talk)

Author Julia Chuzhoy



PDF
Thumbnail PDF

File

LIPIcs.SWAT.2016.31.pdf
  • Filesize: 206 kB
  • 1 pages

Document Identifiers

Author Details

Julia Chuzhoy

Cite As Get BibTex

Julia Chuzhoy. Excluded Grid Theorem: Improved and Simplified (Invited Talk). In 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 53, p. 31:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016) https://doi.org/10.4230/LIPIcs.SWAT.2016.31

Abstract

One of the key results in Robertson and Seymour's seminal work on graph minors is the Excluded Grid Theorem. The theorem states that there is a function f, such that for every positive integer g, every graph whose treewidth is at least f(g) contains the (gxg)-grid as a minor. This theorem has found many applications in graph theory and algorithms. An important open question is establishing tight bounds on f(g) for which the theorem holds. Robertson and Seymour showed that f(g)>= \Omega(g^2 log g), and this remains the best current lower bound on f(g). Until recently, the best upper bound was super-exponential in g. In this talk, we will give an overview of a recent sequence of results, that has lead to the best current upper bound of f(g)=O(g^{19}polylog(g)). We will also survey some connections to algorithms for graph routing problems.

Subject Classification

Keywords
  • Graph Minor Theory
  • Excluded Grid Theorem
  • Graph Routing

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail