Diagnosis in Infinite-State Probabilistic Systems

Authors Nathalie Bertrand, Serge Haddad, Engel Lefaucheux



PDF
Thumbnail PDF

File

LIPIcs.CONCUR.2016.37.pdf
  • Filesize: 0.58 MB
  • 15 pages

Document Identifiers

Author Details

Nathalie Bertrand
Serge Haddad
Engel Lefaucheux

Cite As Get BibTex

Nathalie Bertrand, Serge Haddad, and Engel Lefaucheux. Diagnosis in Infinite-State Probabilistic Systems. In 27th International Conference on Concurrency Theory (CONCUR 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 59, pp. 37:1-37:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016) https://doi.org/10.4230/LIPIcs.CONCUR.2016.37

Abstract

In a recent work, we introduced four variants of diagnosability
(FA, IA, FF, IF) in (finite) probabilistic
systems (pLTS) depending whether one considers (1) finite or
infinite runs and (2) faulty or all runs. We studied their
relationship and established that the corresponding decision
problems are PSPACE-complete. A key ingredient of the decision
procedures was a characterisation of diagnosability by the fact that
a random run almost surely lies in an open set whose specification
only depends on the qualitative behaviour of the pLTS. Here we
investigate similar issues for infinite pLTS. We first show that
this characterisation still holds for FF-diagnosability but
with a G-delta set instead of an open set and also for IF-
and IA-diagnosability when pLTS are finitely branching. We also
prove that surprisingly FA-diagnosability cannot be
characterised in this way even in the finitely branching case. Then
we apply our characterisations for a partially observable
probabilistic extension of visibly pushdown automata (POpVPA),
yielding EXPSPACE procedures for solving diagnosability problems.
In addition, we establish some computational lower bounds and show
that slight extensions of POpVPA lead to undecidability.

Subject Classification

Keywords
  • probabilistic systems
  • infinite-state systems
  • pushdown automata
  • diagnosis
  • partial observation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. STOC'04, pages 202-211. ACM, 2004. Google Scholar
  2. N. Bertrand, É. Fabre, S. Haar, S. Haddad, and L. Hélouët. Active diagnosis for probabilistic systems. In Proc. FoSSaCS'14, volume 8412 of LNCS, pages 29-42. Springer, 2014. Google Scholar
  3. N. Bertrand, S. Haddad, and E. Lefaucheux. Foundation of diagnosis and predictability in probabilistic systems. In Proc. FSTTCS'14, volume 29 of LIPIcs, pages 417-429. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014. Google Scholar
  4. N. Bertrand, S. Haddad, and E. Lefaucheux. Accurate approximate diagnosability of stochastic systems. In Proc. LATA'16, volume 9618 of LNCS, pages 549-561. Springer, 2016. Google Scholar
  5. N. Bertrand, S. Haddad, and E. Lefaucheux. Diagnosis in infinite-state probabilistic systems (long version). Technical report, HAL Inria, 2016. URL: https://hal.inria.fr/hal-01334218.
  6. M. P. Cabasino, A. Giua, and C. Seatzu. Diagnosability of discrete-event systems using labeled Petri nets. IEEE Trans. Automation Science and Engineering, 11(1):144-153, 2014. Google Scholar
  7. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations. Journal of the ACM, 56(1), 2009. Google Scholar
  8. K. Etessami and M. Yannakakis. Model checking of recursive probabilistic systems. ACM Trans. Computational Logic, 13(2):12, 2012. Google Scholar
  9. S. Haar, S. Haddad, T. Melliti, and S. Schwoon. Optimal constructions for active diagnosis. In Proc. FSTTCS'13, volume 24 of LIPIcs, pages 527-539. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. Google Scholar
  10. S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm for testing diagnosability of discrete-event systems. IEEE Trans. Automatic Control, 46(8):1318-1321, 2001. Google Scholar
  11. A. Kučera, J. Esparza, and R. Mayr. Model checking probabilistic pushdown automata. Logical Methods in Computer Science, 2(1), 2006. Google Scholar
  12. C. Morvan and S. Pinchinat. Diagnosability of pushdown systems. In Proc. HVC'09, volume 6405 of LNCS, pages 21-33. Springer, 2009. Google Scholar
  13. Y. N. Moschovakis. Descriptive Set Theory. Mathematical Surveys and Monographs. AMS, 2009. Google Scholar
  14. M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of discrete-event systems. IEEE Trans. Automatic Control, 43(7):908-929, 1998. Google Scholar
  15. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosability of discrete-event systems. IEEE Trans. Automatic Control, 40(9):1555-1575, 1995. Google Scholar
  16. D. Thorsley and D. Teneketzis. Diagnosability of stochastic discrete-event systems. IEEE Trans. Automatic Control, 50(4):476-492, 2005. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail