LIPIcs.ICALP.2016.113.pdf
- Filesize: 0.5 MB
- 14 pages
Contextuality in quantum physics provides a key resource for quantum information and computation. The topological approach in [Abramsky and Brandenburger, New J. Phys., 2011, Abramsky et al., CSL 2015, 2015] characterizes contextuality as "global inconsistency" coupled with "local consistency", revealing it to be a phenomenon also found in many other fields. This has yielded a logical method of detecting and proving the "global inconsistency" part of contextuality. Our goal is to capture the other, "local consistency" part, which requires a novel approach to logic that is sensitive to the topology of contexts. To achieve this, we formulate a logic of local inference by using context-sensitive theories and models in regular categories. This provides a uniform framework for local consistency, and lays a foundation for high-level methods of detecting, proving, and moreover using contextuality as computational resource.
Feedback for Dagstuhl Publishing