On Interference Among Moving Sensors and Related Problems

Authors Jean-Lou De Carufel, Matthew J. Katz, Matias Korman, André van Renssen, Marcel Roeloffzen, Shakhar Smorodinsky



PDF
Thumbnail PDF

File

LIPIcs.ESA.2016.34.pdf
  • Filesize: 495 kB
  • 11 pages

Document Identifiers

Author Details

Jean-Lou De Carufel
Matthew J. Katz
Matias Korman
André van Renssen
Marcel Roeloffzen
Shakhar Smorodinsky

Cite As Get BibTex

Jean-Lou De Carufel, Matthew J. Katz, Matias Korman, André van Renssen, Marcel Roeloffzen, and Shakhar Smorodinsky. On Interference Among Moving Sensors and Related Problems. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 34:1-34:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016) https://doi.org/10.4230/LIPIcs.ESA.2016.34

Abstract

We show that for any set of n moving points in R^d and any parameter 2<=k<n, one can select a fixed non-empty subset of the points of size O(k log k), such that the Voronoi diagram of this subset is "balanced" at any given time (i.e., it contains O(n/k) points per cell). We also show that the bound O(k log k) is near optimal even for the one dimensional case in which points move linearly in time. As an application, we show that one can assign communication radii to the sensors of a network of $n$ moving sensors so that at any given time, their interference is O( (n log n)^0.5). This is optimal up to an O((log n)^0.5) factor.

Subject Classification

Keywords
  • Range spaces
  • Voronoi diagrams
  • moving points
  • facility location
  • interference minimization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. N. Alon. A non-linear lower bound for planar epsilon-nets. Discrete & Computational Geometry, 47(2):235-244, 2012. URL: http://dx.doi.org/10.1007/s00454-010-9323-7.
  2. B. Aronov, E. Ezra, and M. Sharir. Small-size epsilon-nets for axis-parallel rectangles and boxes. SIAM Journal on Computing, 39(7):3248-3282, 2010. Google Scholar
  3. K. Böröczky. Packing of spheres in spaces of constant curvature. Acta Mathematica Academiae Scientiarum Hungarica, 32(3-4):243-261, 1978. URL: http://dx.doi.org/10.1007/BF01902361.
  4. Y. Brise, K. Buchin, D. Eversmann, M. Hoffmann, and W. Mulzer. Interference minimization in asymmetric sensor networks. In ALGOSENSORS 2014, pages 136-151, 2014. URL: http://dx.doi.org/10.1007/978-3-662-46018-4_9.
  5. J.-L. De Carufel, M. Katz, M. Korman, A. van Renssen, M. Roeloffzen, and S. Smorodinsky. On kinetic range spaces and their applications. CoRR, abs/1507.02130, 2015. URL: http://arxiv.org/abs/1507.02130.
  6. M.M. Halldórsson and T. Tokuyama. Minimizing interference of a wireless ad-hoc network in a plane. Theoretical Computer Science, 402(1):29-42, 2008. URL: http://dx.doi.org/10.1016/j.tcs.2008.03.003.
  7. D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete & Computational Geometry, 2:127-151, 1987. Google Scholar
  8. J. Komlós, J. Pach, and G.J. Woeginger. Almost tight bounds for epsilon-nets. Discrete & Computational Geometry, 7:163-173, 1992. Google Scholar
  9. M. Korman. Minimizing interference in ad-hoc networks with bounded communication radius. Information Processing Letters, 112(19):748-752, 2012. URL: http://dx.doi.org/10.1016/j.ipl.2012.06.021.
  10. J. Matoušek. Approximations and optimal geometric divide-and-conquer. In Symposium on the Theory of Computing, pages 505-511, 1991. Google Scholar
  11. J. Matoušek. Lectures on Discrete Geometry. Springer-Verlag New York, Inc., 2002. Google Scholar
  12. G. Nivasch. Improved bounds and new techniques for Davenport-Schinzel sequences and their generalizations. Journal of the ACM, 57(3), 2010. Google Scholar
  13. J. Pach and P. K. Agarwal. Combinatorial Geometry. Wiley Interscience, 1995. Google Scholar
  14. J. Pach and G. Tardos. Tight lower bounds for the size of epsilon-nets. In Symposium on Computational Geometry, pages 458-463, 2011. Google Scholar
  15. M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York, 1995. Google Scholar
  16. V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264-280, 1971. Google Scholar
  17. P. von Rickenbach, R. Wattenhofer, and A. Zollinger. Algorithmic models of interference in wireless ad hoc and sensor networks. IEEE/ACM transactions on sensor networks, 17(1):172-185, 2009. URL: http://dx.doi.org/10.1109/TNET.2008.926506.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail