LIPIcs.ESA.2016.34.pdf
- Filesize: 495 kB
- 11 pages
We show that for any set of n moving points in R^d and any parameter 2<=k<n, one can select a fixed non-empty subset of the points of size O(k log k), such that the Voronoi diagram of this subset is "balanced" at any given time (i.e., it contains O(n/k) points per cell). We also show that the bound O(k log k) is near optimal even for the one dimensional case in which points move linearly in time. As an application, we show that one can assign communication radii to the sensors of a network of $n$ moving sensors so that at any given time, their interference is O( (n log n)^0.5). This is optimal up to an O((log n)^0.5) factor.
Feedback for Dagstuhl Publishing