LIPIcs.ESA.2016.51.pdf
- Filesize: 0.49 MB
- 12 pages
In this paper, we introduce a natural class of multigraphs called hierarchical-scale-free (HSF) multigraphs, and consider constant-time testability on the class. We show that a very wide subclass of HSF is hyperfinite. Based on this result, an algorithm for a deterministic partitioning oracle can be constructed. We conclude by showing that every property is constant-time testable on the above subclass of HSF. This algorithm utilizes findings by Newman and Sohler of STOC'11. However, their algorithm is based on a bounded-degree model, while it is known that actual scale-free networks usually include hubs, which have a very large degree. HSF is based on scale-free properties and includes such hubs. This is the first universal result of constant-time testability on a class of graphs made by a model of scale-free networks, and it has the potential to be applicable on a very wide range of scale-free networks.
Feedback for Dagstuhl Publishing