A Randomized Polynomial Kernelization for Vertex Cover with a Smaller Parameter

Author Stefan Kratsch



PDF
Thumbnail PDF

File

LIPIcs.ESA.2016.59.pdf
  • Filesize: 0.53 MB
  • 17 pages

Document Identifiers

Author Details

Stefan Kratsch

Cite As Get BibTex

Stefan Kratsch. A Randomized Polynomial Kernelization for Vertex Cover with a Smaller Parameter. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 59:1-59:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016) https://doi.org/10.4230/LIPIcs.ESA.2016.59

Abstract

In the Vertex Cover problem we are given a graph G=(V,E) and an integer k and have to determine whether there is a set X subseteq V of size at most k such that each edge in E has at least one endpoint in X. The problem can be easily solved in time O^*(2^k), making it fixed-parameter tractable (FPT) with respect to k. While the fastest known algorithm takes only time O^*(1.2738^k), much stronger improvements have been obtained by studying parameters that are smaller than k. Apart from treewidth-related results, the arguably best algorithm for Vertex Cover runs in time O^*(2.3146^p), where p = k - LP(G) is only the excess of the solution size k over the best fractional vertex cover [Lokshtanov et al., TALG 2014]. Since p <= k but k cannot be bounded in terms of p alone, this strictly increases the range of tractable instances.

Recently, Garg and Philip (SODA 2016) greatly contributed to understanding the parameterized complexity of the Vertex Cover problem. They prove that 2LP(G) - MM(G) is a lower bound for the vertex cover size of G, where MM(G) is the size of a largest matching of G, and proceed to study parameter l = k - (2LP(G)-MM(G)). They give an algorithm of running time O^*(3^l), proving that Vertex Cover is FPT in l. It can be easily observed that l <= p whereas p cannot be bounded in terms of l alone. We complement the work of Garg and Philip by proving that Vertex Cover admits a randomized polynomial kernelization in terms of l, i.e., an efficient preprocessing to size polynomial in l. This improves over parameter p = k - LP(G) for which this was previously known [Kratsch and Wahlström, FOCS 2012].

Subject Classification

Keywords
  • Vertex cover
  • parameterized complexity
  • kernelization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423-434, 2009. URL: http://dx.doi.org/10.1016/j.jcss.2009.04.001.
  2. Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci., 412(35):4570-4578, 2011. URL: http://dx.doi.org/10.1016/j.tcs.2011.04.039.
  3. Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further improvements. J. Algorithms, 41(2):280-301, 2001. URL: http://dx.doi.org/10.1006/jagm.2001.1186.
  4. Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor. Comput. Sci., 411(40-42):3736-3756, 2010. URL: http://dx.doi.org/10.1016/j.tcs.2010.06.026.
  5. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: http://dx.doi.org/10.1007/978-3-319-21275-3.
  6. Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. On the hardness of losing width. Theory Comput. Syst., 54(1):73-82, 2014. URL: http://dx.doi.org/10.1007/s00224-013-9480-1.
  7. Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On multiway cut parameterized above lower bounds. TOCT, 5(1):3, 2013. URL: http://dx.doi.org/10.1145/2462896.2462899.
  8. Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1-23:27, 2014. URL: http://dx.doi.org/10.1145/2629620.
  9. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: http://dx.doi.org/10.1007/978-1-4471-5559-1.
  10. Shivam Garg and Geevarghese Philip. Raising the bar for vertex cover: Fixed-parameter tractability above a higher guarantee. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1152-1166. SIAM, 2016. URL: http://dx.doi.org/10.1137/1.9781611974331.ch80.
  11. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. URL: http://dx.doi.org/10.1006/jcss.2001.1774.
  12. Bart M. P. Jansen. The power of data reduction: Kernels for fundamental graph problems. PhD thesis, Utrecht University, 2013. Google Scholar
  13. Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - upper and lower bounds for a refined parameter. Theory Comput. Syst., 53(2):263-299, 2013. URL: http://dx.doi.org/10.1007/s00224-012-9393-4.
  14. Stefan Kratsch. Recent developments in kernelization: A survey. Bulletin of the EATCS, 113, 2014. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/285.
  15. Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization. CoRR, abs/1111.2195, 2011. URL: http://arxiv.org/abs/1111.2195.
  16. Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450-459. IEEE Computer Society, 2012. URL: http://dx.doi.org/10.1109/FOCS.2012.46.
  17. Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on Algorithms, 11(2):15:1-15:31, 2014. URL: http://dx.doi.org/10.1145/2566616.
  18. László Lovász and Michael D. Plummer. Matching Theory. North-Holland, 1986. Google Scholar
  19. Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed values: Maxsat and maxcut. J. Algorithms, 31(2):335-354, 1999. URL: http://dx.doi.org/10.1006/jagm.1998.0996.
  20. Sounaka Mishra, Venkatesh Raman, Saket Saurabh, Somnath Sikdar, and C. R. Subramanian. The complexity of König subgraph problems and above-guarantee vertex cover. Algorithmica, 61(4):857-881, 2011. URL: http://dx.doi.org/10.1007/s00453-010-9412-2.
  21. N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. LP can be a cure for parameterized problems. In Christoph Dürr and Thomas Wilke, editors, 29th International Symposium on Theoretical Aspects of Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris, France, volume 14 of LIPIcs, pages 338-349. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2012.338.
  22. George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: Structural properties and algorithms. Math. Program., 8(1):232-248, 1975. URL: http://dx.doi.org/10.1007/BF01580444.
  23. Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Paths, flowers and vertex cover. In Camil Demetrescu and Magnús M. Halldórsson, editors, Algorithms - ESA 2011 - 19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings, volume 6942 of Lecture Notes in Computer Science, pages 382-393. Springer, 2011. URL: http://dx.doi.org/10.1007/978-3-642-23719-5_33.
  24. Igor Razgon and Barry O'Sullivan. Almost 2-sat is fixed-parameter tractable. J. Comput. Syst. Sci., 75(8):435-450, 2009. URL: http://dx.doi.org/10.1016/j.jcss.2009.04.002.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail