Ackermannian Integer Compression and the Word Problem for Hydra Groups

Authors Will Dison, Eduard Einstein, Timothy R. Riley



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2016.30.pdf
  • Filesize: 0.55 MB
  • 14 pages

Document Identifiers

Author Details

Will Dison
Eduard Einstein
Timothy R. Riley

Cite AsGet BibTex

Will Dison, Eduard Einstein, and Timothy R. Riley. Ackermannian Integer Compression and the Word Problem for Hydra Groups. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 30:1-30:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.MFCS.2016.30

Abstract

For a finitely presented group, the word problem asks for an algorithm which declares whether or not words on the generators represent the identity. The Dehn function is a complexity measure of a direct attack on the word problem by applying the defining relations. Dison and Riley showed that a "hydra phenomenon" gives rise to novel groups with extremely fast growing (Ackermannian) Dehn functions. Here we show that nevertheless, there are efficient (polynomial time) solutions to the word problems of these groups. Our main innovation is a means of computing efficiently with enormous integers which are represented in compressed forms by strings of Ackermann functions.
Keywords
  • Ackermann functions
  • hydra
  • word problem

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. G. Baumslag. A non-cyclic one-relator group all of whose finite quotients are cyclic. J. Austral. Math. Soc., 10:497-498, 1969. Google Scholar
  2. A. A. Bernasconi. On HNN-extensions and the complexity of the word problem for one-relator groups. PhD thesis, University of Utah, 1994. URL: http://www.math.utah.edu/~sg/Papers/bernasconi-thesis.pdf.
  3. W. W. Boone. Certain simple unsolvable problems in group theory I, II, III, IV, V, VI. Nederl. Akad. Wetensch Proc. Ser. A. 57, 231-236, 492-497 (1954), 58, 252-256, 571-577 (1955), 60, 22-26, 227-232 (1957). Google Scholar
  4. N. Brady, T. R. Riley, and H. Short. The geometry of the word problem for finitely generated groups. Advanced Courses in Mathematics CRM Barcelona. Birkhäuser-Verlag, 2007. Google Scholar
  5. M. R. Bridson. The geometry of the word problem. In M. R. Bridson and S. M. Salamon, editors, Invitations to Geometry and Topology, pages 33-94. O.U.P., 2002. Google Scholar
  6. M. R. Bridson and A. Haefliger. Metric Spaces of Non-positive Curvature. Number 319 in Grundlehren der mathematischen Wissenschaften. Springer Verlag, 1999. Google Scholar
  7. D. E. Cohen. The mathematician who had little wisdom: a story and some mathematics. In Combinatorial and geometric group theory (Edinburgh, 1993), volume 204 of London Math. Soc. Lecture Note Ser., pages 56-62. Cambridge Univ. Press, Cambridge, 1995. Google Scholar
  8. D. E. Cohen, K. Madlener, and F. Otto. Separating the intrinsic complexity and the derivational complexity of the word problem for finitely presented groups. Math. Logic Quart., 39(2):143-157, 1993. Google Scholar
  9. M. Dehn. Über unendliche diskontunuierliche Gruppen. Math. Ann., 71:116-144, 1912. Google Scholar
  10. M. Dehn. Papers on group theory and topology. Springer-Verlag, New York, 1987. Translated from the German and with introductions and an appendix by J. Stillwell, With an appendix by O. Schreier. Google Scholar
  11. V. Diekert, J. Laun, and A. Ushakov. Efficient algorithms for highly compressed data: The Word Problem in Higman’s group is in P. In Christoph Dürr and Thomas Wilke, editors, 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012), volume 14 of Leibniz International Proceedings in Informatics (LIPIcs), pages 218-229, Dagstuhl, Germany, 2012. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2012.218.
  12. W. Dison, E. Einstein, and T. R. Riley. Taming the hydra: the word problem and efficient calculation with ackermann-compressed integers. URL: http://arxiv.org/abs/1509.02557.
  13. W. Dison and T. R. Riley. Hydra groups. Comment. Math. Helv., 88(3):507-540, 2013. URL: http://dx.doi.org/10.4171/CMH/294.
  14. S. M. Gersten. Isodiametric and isoperimetric inequalities in group extensions. Preprint, University of Utah, 1991. Google Scholar
  15. S. M. Gersten. Isoperimetric and isodiametric functions of finite presentations. In G. Niblo and M. Roller, editors, Geometric group theory I, number 181 in LMS lecture notes. Camb. Univ. Press, 1993. Google Scholar
  16. M. Gromov. Asymptotic invariants of infinite groups. In G. Niblo and M. Roller, editors, Geometric group theory II, number 182 in LMS lecture notes. Camb. Univ. Press, 1993. Google Scholar
  17. N. Haubold and M. Lohrey. Compressed word problems in HNN-extensions and amalgamated products. Theory Comput. Syst., 49(2):283-305, 2011. URL: http://dx.doi.org/10.1007/s00224-010-9295-2.
  18. N. Haubold, M. Lohrey, and C. Mathissen. Compressed decision problems for graph products and applications to (outer) automorphism groups. Internat. J. Algebra Comput., 22(8):1240007, 53, 2012. URL: http://dx.doi.org/10.1142/S0218196712400073.
  19. G. Higman. A finitely generated infinite simple group. J. London Math. Soc., 26:61-64, 1951. Google Scholar
  20. O. Kharlampovich, A. Miasnikov, and M. Sapir. Algorithmically complex residually finite groups. URL: http://front.math.ucdavis.edu/1204.6506.
  21. M. Lohrey. Word problems and membership problems on compressed words. SIAM J. Comput., 35(5):1210-1240, 2006. URL: http://dx.doi.org/10.1137/S0097539704445950.
  22. M. Lohrey. Compressed word problems for inverse monoids. In Mathematical foundations of Computer Science 2011, volume 6907 of Lecture Notes in Comput. Sci., pages 448-459. Springer, Heidelberg, 2011. URL: http://dx.doi.org/10.1007/978-3-642-22993-0_41.
  23. M. Lohrey. The compressed word problem for groups. Springer Briefs in Mathematics. Springer, New York, 2014. URL: http://dx.doi.org/10.1007/978-1-4939-0748-9.
  24. M. Lohrey and S. Schleimer. Efficient computation in groups via compression. In Proc. Computer Science in Russia (CSR 2007), volume 4649 of Lecture Notes in Computer Science, pages 249-258. Springer, 2007. Google Scholar
  25. K. Madlener and F. Otto. Pseudonatural algorithms for the word problem for finitely presented monoids and groups. J. Symbolic Comput., 1(4):383-418, 1985. Google Scholar
  26. A. G. Miasnikov, A. Ushakov, and D. W. Won. Power circuits, exponential algebra, and time complexity. Internat. J. Algebra Comput., 22(6):1250047, 51, 2012. URL: http://dx.doi.org/10.1142/S0218196712500476.
  27. P. S. Novikov. On the algorithmic unsolvability of the word problem in group theory. Trudt Mat. Inst. Stkelov, 44:1-143, 1955. Google Scholar
  28. A. N. Platonov. An isoperimetric function of the Baumslag-Gersten group. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3:12-17, 70, 2004. Translation in Moscow Univ. Math. Bull. 59 (2004). Google Scholar
  29. T. R. Riley. What is a Dehn function? Chapter for the forthcoming Office hours with a geometric group theorist, Princeton University Press, M. Clay and D. Magalit, eds. Google Scholar
  30. H. E. Rose. Subrecursion: functions and hierarchies, volume 9 of Oxford Logic Guides. The Clarendon Press Oxford University Press, New York, 1984. Google Scholar
  31. M. Sapir. Asymptotic invariants, complexity of groups and related problems. Bull. Math. Sci., 1(2):277-364, 2011. URL: http://dx.doi.org/10.1007/s13373-011-0008-1.
  32. S. Schleimer. Polynomial-time word problems. Comment. Math. Helv., 83(4):741-765, 2008. URL: http://dx.doi.org/10.4171/CMH/142.
  33. P. Schupp. personal communication. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail