LIPIcs.MFCS.2016.67.pdf
- Filesize: 0.49 MB
- 14 pages
A regular language is k-piecewise testable if it is a finite boolean combination of languages of the form Sigma^* a_1 Sigma^* ... Sigma^* a_n Sigma^*, where a_i in Sigma and 0 <= n <= k. Given a DFA A and k >= 0, it is an NL-complete problem to decide whether the language L(A) is piecewise testable and, for k >= 4, it is coNP-complete to decide whether the language L(A) is k-piecewise testable. It is known that the depth of the minimal DFA serves as an upper bound on k. Namely, if L(A) is piecewise testable, then it is k-piecewise testable for k equal to the depth of A. In this paper, we show that some form of nondeterminism does not violate this upper bound result. Specifically, we define a class of NFAs, called ptNFAs, that recognize piecewise testable languages and show that the depth of a ptNFA provides an (up to exponentially better) upper bound on k than the minimal DFA. We provide an application of our result, discuss the relationship between k-piecewise testability and the depth of NFAs, and study the complexity of k-piecewise testability for ptNFAs.
Feedback for Dagstuhl Publishing