On the Parallel Complexity of Bisimulation on Finite Systems

Authors Moses Ganardi, Stefan Göller, Markus Lohrey



PDF
Thumbnail PDF

File

LIPIcs.CSL.2016.12.pdf
  • Filesize: 0.51 MB
  • 17 pages

Document Identifiers

Author Details

Moses Ganardi
Stefan Göller
Markus Lohrey

Cite As Get BibTex

Moses Ganardi, Stefan Göller, and Markus Lohrey. On the Parallel Complexity of Bisimulation on Finite Systems. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 62, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016) https://doi.org/10.4230/LIPIcs.CSL.2016.12

Abstract

In this paper the computational complexity of the (bi)simulation problem over restricted graph classes is studied. For trees given as pointer structures or terms the (bi)simulation problem is complete for logarithmic space or NC^1, respectively. This solves an open problem from Balcázar, Gabarró, and Sántha. We also show that the simulation problem is P-complete even for graphs of bounded path-width.

Subject Classification

Keywords
  • bisimulation
  • computational complexity
  • tree width

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. L. Aceto and A. Ingólfsdóttir. Reactive Systems: Modelling, Specification and Verification. Cambridge University Press, 2007. Google Scholar
  2. J. L. Balcázar, J. Gabarró, and M. Santha. Deciding bisimilarity is P-complete. Form. Asp. Comput., 4(6A):638-648, 1992. Google Scholar
  3. D. A. M. Barrington and J. Corbet. On the relative complexity of some languages in NC¹. Inform. Process. Lett., 32:251-256, 1989. Google Scholar
  4. S. R. Buss. Alogtime algorithms for tree isomorphism, comparison, and canonization. In Kurt Gödel Colloquium 97, pages 18-33, 1997. Google Scholar
  5. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. Google Scholar
  6. M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of Bodlaender and Courcelle. In Proceedings of FOCS 2010, pages 143-152. IEEE, 2010. Google Scholar
  7. M. Elberfeld, A. Jakoby, and T. Tantau. Algorithmic meta theorems for circuit classes of constant and logarithmic depth. In Proceedings of STACS 2012, volume 14 of LIPIcs, pages 66-77. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. Google Scholar
  8. M. Elberfeld and P. Schweitzer. Canonizing graphs of bounded tree width in logspace. In Proceedings of STACS 2016, volume 47 of LIPIcs, pages 32:1-32:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. Google Scholar
  9. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, 1995. Google Scholar
  10. M. Grohe, B. Grußien, A. Hernich, and B. Laubner. L-recursion and a new logic for logarithmic space. Log. Meth. Comput. Sci., 9(1), 2012. Google Scholar
  11. F. Gurski and E. Wanke. The tree-width of clique-width bounded graphs without K_n,n. In Proceedings of WG 2000, volume 1928 of Lecture Notes in Computer Science, pages 196-205. Springer, 2000. Google Scholar
  12. W. Hesse, E. Allender, and D. A. Mix Barrington. Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci., 65:695-716, 2002. Google Scholar
  13. B. Jenner, J. Köbler, P. McKenzie, and J. Torán. Completeness results for graph isomorphism. J. Comput. Syst. Sci., 66(3):549-566, 2003. Google Scholar
  14. M. Kaminski, V. V. Lozin, and M. Milanic. Recent developments on graphs of bounded clique-width. Discrete Appl. Math., 157(12):2747-2761, 2009. Google Scholar
  15. P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and three problems of equivalence. Inform. Comput., 86(1):43-68, 1990. Google Scholar
  16. K.-J. Lange and P. McKenzie. On the Complexity of Free Monoid Morphisms. In Proceedings of ISAAC'98, volume 1533 of Lecture Notes in Computer Science, pages 247-256. Springer, 1998. Google Scholar
  17. S. Lindell. A logspace algorithm for tree canonization (extended abstract). In Proceedings of STOC 1992, pages 400-404. ACM, 1992. Google Scholar
  18. J. Srba. On the power of labels in transition systems. In Proceedings of CONCUR 2001, volume 2154 of Lecture Notes in Computer Science, pages 277-291. Springer, 2001. Google Scholar
  19. H. Vollmer. Introduction to Circuit Complexity. Springer, 1999. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail