Creative Commons Attribution 3.0 Unported license
We introduce space-efficient plane-sweep algorithms for basic planar geometric problems. It is assumed that the input is in a read-only array of n items and that the available workspace is Theta(s) bits, where lg n <= s <= n * lg n. Three techniques that can be used as general tools in different space-efficient algorithms are introduced and employed within our algorithms. In particular, we give an almost-optimal algorithm for finding the closest pair among a set of n points that runs in O(n^2 /s + n * lg s) time. We also give a simple algorithm to enumerate the intersections of n line segments that runs in O((n^2 /s^{2/3}) * lg s + k) time, where k is the number of intersections. The counting version can be solved in O((n^2/s^{2/3}) * lg s) time. When the segments are axis-parallel, we give an O((n^2/s) * lg^{4/3} s + n^{4/3} * lg^{1/3} n)-time algorithm that counts the intersections and an O((n^2/s) * lg s * lg lg s + n * lg s + k)-time algorithm that enumerates the intersections, where k is the number of intersections. We finally present an algorithm that runs in O((n^2 /s + n * lg s) * sqrt{(n/s) * lg n}) time to calculate Klee's measure of axis-parallel rectangles.
@InProceedings{elmasry_et_al:LIPIcs.ISAAC.2016.30,
author = {Elmasry, Amr and Kammer, Frank},
title = {{Space-Efficient Plane-Sweep Algorithms}},
booktitle = {27th International Symposium on Algorithms and Computation (ISAAC 2016)},
pages = {30:1--30:13},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-026-2},
ISSN = {1868-8969},
year = {2016},
volume = {64},
editor = {Hong, Seok-Hee},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.30},
URN = {urn:nbn:de:0030-drops-68009},
doi = {10.4230/LIPIcs.ISAAC.2016.30},
annote = {Keywords: closest pair, line-segments intersection, Klee's measure}
}