A Fast Parameterized Algorithm for Co-Path Set

Authors Blair D. Sullivan, Andrew van der Poel



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2016.28.pdf
  • Filesize: 0.56 MB
  • 13 pages

Document Identifiers

Author Details

Blair D. Sullivan
Andrew van der Poel

Cite As Get BibTex

Blair D. Sullivan and Andrew van der Poel. A Fast Parameterized Algorithm for Co-Path Set. In 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 63, pp. 28:1-28:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017) https://doi.org/10.4230/LIPIcs.IPEC.2016.28

Abstract

The k-CO-PATH SET problem asks, given a graph G and a positive integer k, whether one can delete k edges from G so that the remainder is a collection of disjoint paths. We give a linear-time, randomized fpt algorithm with complexity O^*(1.588^k) for deciding k-CO-PATH SET, significantly improving the previously best known O^*(2.17^k) of Feng, Zhou, and Wang (2015). Our main tool is a new O^*(4^{tw(G)}) algorithm for CO-PATH SET using the Cut&Count framework, where tw(G) denotes treewidth. In general graphs, we combine this with a branching algorithm which refines a 6k-kernel into reduced instances, which we prove have bounded treewidth.

Subject Classification

Keywords
  • co-path set
  • parameterized complexity
  • Cut&Count
  • bounded treewidth

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: fast subset convolution. In Proceedings of STOC, pages 67-74, 2007. URL: http://dx.doi.org/10.1145/1250790.1250801.
  2. Z. Chen, G. Lin, and L. Wang. An approximation algorithm for the minimum co-path set problem. Algorithmica, 60(4):969-986, 2011. Google Scholar
  3. Y. Cheng, Z. Cai, R. Goebel, G. Lin, and B. Zhu. The radiation hybrid map construction problem: recognition, hardness, and approximation algorithms. Unpublished Manuscript, 2008. Google Scholar
  4. D. Cox, M. Burmeister, E. Price, S. Kim, and R. Myers. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science, 250:245-50, 1990. Google Scholar
  5. M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. van Rooij, and J. Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential time. In FOCS, pages 150-159. IEEE, 2011. Google Scholar
  6. Q. Feng, Q. Zhou, and S. Li. Randomized parameterized algorithms for co-path set problem. In FAW, pages 82-93. Springer, 2014. Google Scholar
  7. Q. Feng, Q. Zhou, and J. Wang. Kernelization and randomized parameterized algorithms for co-path set problem. J. Comb. Optim., 2015. in press, DOI 10.1007/s10878-015-9901-y. URL: http://dx.doi.org/10.1007/s10878-015-9901-y.
  8. F. Fomin, S. Gaspers, S. Saurabh, and A. Stepanov. On two techniques of combining branching and treewidth. Algorithmica, 54(2):181-207, April 2009. URL: http://dx.doi.org/10.1007/s00453-007-9133-3.
  9. S. Gaspers. Exponential Time Algorithms - Structures, Measures, and Bounds. VDM, 2010. URL: http://bora.uib.no/bitstream/handle/1956/3436/Dr.thesis_Serge_Gaspers.pdf.
  10. T. Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer, 1994. URL: http://dx.doi.org/10.1007/BFb0045375.
  11. K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion. In Proceedings of STOC, pages 345-354. ACM, 1987. URL: http://dx.doi.org/10.1145/28395.383347.
  12. M. Pilipczuk. Solving connectivity problems parameterized by treewidth in single exponential time. In MFCS, pages 520-531, 2011. Google Scholar
  13. C. Richard III, D. Withers, T. Meeker, S. Maurer, G. Evans, R. Myers, and D. Cox. A radiation hybrid map of the proximal long arm of human chromosome 11 containing the multiple endocrine neoplasia type 1 (men-1) and bcl-1 disease loci. Am. J. Hum. Genet., 49(6):1189-1196, 1991. Google Scholar
  14. N. Robertson and P. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms, 7(3):309-322, 1986. Google Scholar
  15. D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Building human genome maps with radiation hybrids. J. Comp. Biol., 4(4):487-504, 1997. Google Scholar
  16. C. Zhang, H. Jiang, and B. Zhu. Radiation hybrid map construction problem parameterized. Journal of Combinatorial Optimization, 27(1):3-13, 2014. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail