The Complexity of Knapsack in Graph Groups

Authors Markus Lohrey, Georg Zetzsche



PDF
Thumbnail PDF

File

LIPIcs.STACS.2017.52.pdf
  • Filesize: 0.56 MB
  • 14 pages

Document Identifiers

Author Details

Markus Lohrey
Georg Zetzsche

Cite AsGet BibTex

Markus Lohrey and Georg Zetzsche. The Complexity of Knapsack in Graph Groups. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 52:1-52:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.STACS.2017.52

Abstract

Myasnikov et al. have introduced the knapsack problem for arbitrary finitely generated groups. In LohreyZ16 the authors proved that for each graph group, the knapsack problem can be solved in NP. Here, we determine the exact complexity of the problem for every graph group. While the problem is TC^0-complete for complete graphs, it is LogCFL-complete for each (non-complete) transitive forest. For every remaining graph, the problem is NP-complete.
Keywords
  • knapsack
  • subset sum
  • graph groups
  • decision problems in group theory

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. I. J. Aalbersberg and H. J. Hoogeboom. Characterizations of the decidability of some problems for regular trace languages. Mathematical Systems Theory, 22:1-19, 1989. Google Scholar
  2. I. Agol. The virtual Haken conjecture. With an appendix by Agol, Daniel Groves, and Jason Manning. Documenta Mathematica, 18:1045-1087, 2013. Google Scholar
  3. L. Babai, R. Beals, J. Cai, G. Ivanyos, and E. M. Luks. Multiplicative equations over commuting matrices. In Proceedings of SODA 1996, pages 498-507. ACM/SIAM, 1996. Google Scholar
  4. M. Bestvina and N. Brady. Morse theory and finiteness properties of groups. Inventiones Mathematicae, 129(3):445-470, 1997. Google Scholar
  5. J. Crisp and B. Wiest. Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups. Algebraic &Geometric Topology, 4:439-472, 2004. Google Scholar
  6. V. Diekert. Combinatorics on Traces, volume 454 of Lecture Notes in Computer Science. Springer-Verlag, 1990. Google Scholar
  7. M. Elberfeld, A. Jakoby, and T. Tantau. Algorithmic meta theorems for circuit classes of constant and logarithmic depth. Electronic Colloquium on Computational Complexity (ECCC), 18:128, 2011. Google Scholar
  8. E. Frenkel, A. Nikolaev, and A. Ushakov. Knapsack problems in products of groups. Journal of Symbolic Computation, 74:96-108, 2016. Google Scholar
  9. R. Ghrist and V. Peterson. The geometry and topology of reconfiguration. Advances in Applied Mathematics, 38(3):302-323, 2007. Google Scholar
  10. S. Greibach. The hardest context-free language. SIAM Journal on Computing, 2(4):304-310, 1973. Google Scholar
  11. C. Haase. On the complexity of model checking counter automata. PhD thesis, University of Oxford, St Catherine’s College, 2011. Google Scholar
  12. F. Haglund and D. T. Wise. Coxeter groups are virtually special. Advances in Mathematics, 224(5):1890-1903, 2010. Google Scholar
  13. B. Jenner. Knapsack problems for NL. Information Processing Letters, 54(3):169-174, 1995. Google Scholar
  14. M. Kambites. Formal languages and groups as memory. Communications in Algebra, 37:193-208, 2009. URL: http://dx.doi.org/10.1080/00927870802243580.
  15. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85-103. Plenum Press, 1972. Google Scholar
  16. D. König, M. Lohrey, and G. Zetzsche. Knapsack and subset sum problems in nilpotent, polycyclic, and co-context-free groups. In Algebra and Computer Science, volume 677 of Contemporary Mathematics, pages 138-153. American Mathematical Society, 2016. Google Scholar
  17. M. Lohrey and B. Steinberg. The submonoid and rational subset membership problems for graph groups. Journal of Algebra, 320(2):728-755, 2008. Google Scholar
  18. M. Lohrey and G. Zetzsche. The complexity of knapsack in graph groups. Technical report, arXiv.org, 2015. URL: https://arxiv.org/abs/1610.00373.
  19. M. Lohrey and G. Zetzsche. Knapsack in graph groups, HNN-extensions and amalgamated products. In Proceedings of STACS 2016, volume 47 of LIPIcs, pages 50:1-50:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. Google Scholar
  20. R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer-Verlag, 1977. Google Scholar
  21. A. Myasnikov, A. Nikolaev, and A. Ushakov. Knapsack problems in groups. Mathematics of Computation, 84:987-1016, 2015. Google Scholar
  22. C. H. Papadimitriou. On the complexity of integer programming. Journal of the Association for Computing Machinery, 28(4):765-768, 1981. Google Scholar
  23. L. Pottier. Minimal solutions of linear diophantine systems : bounds and algorithms. In Proceedings of RTA 1991, volume 488 of Lecture Notes in Computer Science, pages 162-173. Springer-Verlag, 1991. Google Scholar
  24. I. H. Sudborough. On the tape complexity of deterministic context-free languages. Journal of the ACM, 25(3):405-414, 1978. Google Scholar
  25. H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999. Google Scholar
  26. D. T. Wise. Research announcement: the structure of groups with a quasiconvex hierarchy. Electronic Research Announcements in Mathematical Sciences, 16:44-55, 2009. Google Scholar
  27. E. S. Wolk. A note on "The comparability graph of a tree". Proceedings of the American Mathematical Society, 16:17-20, 1965. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail