LIPIcs.STACS.2017.49.pdf
- Filesize: 0.53 MB
- 14 pages
We study the following computational problem: for which values of k, the majority of n bits MAJ_n can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJ_k o MAJ_k. We observe that the minimum value of k for which there exists a MAJ_k o MAJ_k circuit that has high correlation with the majority of n bits is equal to Theta(sqrt(n)). We then show that for a randomized MAJ_k o MAJ_k circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n^(2/3+o(1)). We show a worst case lower bound: if a MAJ_k o MAJ_k circuit computes the majority of n bits correctly on all inputs, then k <= n^(13/19+o(1)). This lower bound exceeds the optimal value for randomized circuits and thus is unreachable for pure randomized techniques. For depth 3 circuits we show that a circuit with k= O(n^(2/3)) can compute MAJ_n correctly on all inputs.
Feedback for Dagstuhl Publishing