We are motivated by a tantalizing open question in exact algorithms: can we detect whether an n-vertex directed graph G has a Hamiltonian cycle in time significantly less than 2^n? We present new randomized algorithms that improve upon several previous works: 1. We show that for any constant 0<lambda<1 and prime p we can count the Hamiltonian cycles modulo p^((1-lambda)n/(3p)) in expected time less than c^n for a constant c<2 that depends only on p and lambda. Such an algorithm was previously known only for the case of counting modulo two [Bj\"orklund and Husfeldt, FOCS 2013]. 2. We show that we can detect a Hamiltonian cycle in O^*(3^(n-alpha(G))) time and polynomial space, where alpha(G) is the size of the maximum independent set in G. In particular, this yields an O^*(3^(n/2)) time algorithm for bipartite directed graphs, which is faster than the exponential-space algorithm in [Cygan et al., STOC 2013]. Our algorithms are based on the algebraic combinatorics of "incidence assignments" that we can capture through evaluation of determinants of Laplacian-like matrices, inspired by the Matrix--Tree Theorem for directed graphs. In addition to the novel algorithms for directed Hamiltonicity, we use the Matrix--Tree Theorem to derive simple algebraic algorithms for detecting out-branchings. Specifically, we give an O^*(2^k)-time randomized algorithm for detecting out-branchings with at least k internal vertices, improving upon the algorithms of [Zehavi, ESA 2015] and [Bj\"orklund et al., ICALP 2015]. We also present an algebraic algorithm for the directed k-Leaf problem, based on a non-standard monomial detection problem.
@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2017.91, author = {Bj\"{o}rklund, Andreas and Kaski, Petteri and Koutis, Ioannis}, title = {{Directed Hamiltonicity and Out-Branchings via Generalized Laplacians}}, booktitle = {44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)}, pages = {91:1--91:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-041-5}, ISSN = {1868-8969}, year = {2017}, volume = {80}, editor = {Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.91}, URN = {urn:nbn:de:0030-drops-74208}, doi = {10.4230/LIPIcs.ICALP.2017.91}, annote = {Keywords: counting, directed Hamiltonicity, graph Laplacian, independent set, k-internal out-branching} }
Feedback for Dagstuhl Publishing