LIPIcs.ICALP.2017.120.pdf
- Filesize: 0.61 MB
- 14 pages
In this paper, we investigate the finite satisfiability and model checking problems for the logic D of the sub-interval relation under the homogeneity assumption, that constrains a proposition letter to hold over an interval if and only if it holds over all its points. First, we prove that the satisfiability problem for D, over finite linear orders, is PSPACE-complete; then, we show that its model checking problem, over finite Kripke structures, is PSPACE-complete as well.
Feedback for Dagstuhl Publishing