LIPIcs.ICALP.2017.87.pdf
- Filesize: 0.49 MB
- 13 pages
We present a pseudo-deterministic NC algorithm for finding perfect matchings in bipartite graphs. Specifically, our algorithm is a randomized parallel algorithm which uses poly(n) processors, poly(log n) depth, poly(log n) random bits, and outputs for each bipartite input graph a unique perfect matching with high probability. That is, on the same graph it returns the same matching for almost all choices of randomness. As an immediate consequence we also find a pseudo-deterministic NC algorithm for constructing a depth first search (DFS) tree. We introduce a method for computing the union of all min-weight perfect matchings of a weighted graph in RNC and a novel set of weight assignments which in combination enable isolating a unique matching in a graph. We then show a way to use pseudo-deterministic algorithms to reduce the number of random bits used by general randomized algorithms. The main idea is that random bits can be reused by successive invocations of pseudo-deterministic randomized algorithms. We use the technique to show an RNC algorithm for constructing a depth first search (DFS) tree using only O(log^2 n) bits whereas the previous best randomized algorithm used O(log^7 n), and a new sequential randomized algorithm for the set-maxima problem which uses fewer random bits than the previous state of the art. Furthermore, we prove that resolving the decision question NC = RNC, would imply an NC algorithm for finding a bipartite perfect matching and finding a DFS tree in NC. This is not implied by previous randomized NC search algorithms for finding bipartite perfect matching, but is implied by the existence of a pseudo-deterministic NC search algorithm.
Feedback for Dagstuhl Publishing