Regular Separability of Parikh Automata

Authors Lorenzo Clemente, Wojciech Czerwinski, Slawomir Lasota, Charles Paperman



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2017.117.pdf
  • Filesize: 0.52 MB
  • 13 pages

Document Identifiers

Author Details

Lorenzo Clemente
Wojciech Czerwinski
Slawomir Lasota
Charles Paperman

Cite As Get BibTex

Lorenzo Clemente, Wojciech Czerwinski, Slawomir Lasota, and Charles Paperman. Regular Separability of Parikh Automata. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 117:1-117:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017) https://doi.org/10.4230/LIPIcs.ICALP.2017.117

Abstract

We investigate a subclass of languages recognized by vector addition systems, namely languages of nondeterministic Parikh automata. While the regularity problem (is the language of a given automaton regular?) is undecidable for this model, we surprisingly show decidability of the regular separability problem: given two Parikh automata, is there a regular language that contains one of them and is disjoint from the other? We supplement this result by proving undecidability of the same problem already for languages of visibly one counter automata.

Subject Classification

Keywords
  • Regular separability problem
  • Parikh automata
  • integer vector addition systems
  • visible one counter automata
  • decidability
  • undecidability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3):16:1-16:43, May 2009. URL: http://dx.doi.org/10.1145/1516512.1516518.
  2. Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. On the Expressiveness of Parikh Automata and Related Models. In Proc. of NCMA'11, pages 103-119, 2011. Google Scholar
  3. Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained automata. Int. J. Found. Comput. Sci., 24(7):1099-1116, 2013. URL: http://dx.doi.org/10.1142/S0129054113400339.
  4. Christian Choffrut and Serge Grigorieff. Separability of rational relations in A^* × ℕ^m by recognizable relations is decidable. Inf. Process. Lett., 99(1):27-32, 2006. Google Scholar
  5. Lorenzo Clemente, Wojciech Czerwinski, Slawomir Lasota, and Charles Paperman. Separability of Reachability Sets of Vector Addition Systems. In Proc. of STACS'17, volume 66 of LIPICs, pages 24:1-24:14, 2017. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2017.24.
  6. Wojciech Czerwinski and Slawomir Lasota. Regular separability of one counter automata. In Proc. of LICS'17, 2017. To appear. Google Scholar
  7. Wojciech Czerwiński, Wim Martens, and Tomás Masopust. Efficient separability of regular languages by subsequences and suffixes. In Proc. of ICALP'13, pages 150-161, 2013. Google Scholar
  8. Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, and Marc Zeitoun. A note on decidable separability by piecewise testable languages. In Proc. of FCT'15, pages 173-185, 2015. Google Scholar
  9. Jean Goubault-Larrecq and Sylvain Schmitz. Deciding piecewise testable separability for regular tree languages. In Proc. of ICALP'16, pages 97:1-97:15, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.97.
  10. Harry B. Hunt III. On the decidability of grammar problems. J. ACM, 29(2):429-447, 1982. Google Scholar
  11. Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J. ACM, 25(1):116-133, 1978. Google Scholar
  12. Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In Proc. of ICALP'03, pages 681-696, 2003. URL: http://dx.doi.org/10.1007/3-540-45061-0_54.
  13. Eryk Kopczynski. Invisible pushdown languages. In Proc. of LICS'16, pages 867-872, 2016. URL: http://dx.doi.org/10.1145/2933575.2933579.
  14. Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by locally testable and locally threshold testable languages. In Proc. of FSTTCS'13, pages 363-375, 2013. Google Scholar
  15. Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by piecewise testable and unambiguous languages. In Proc. of MFCS'13, pages 729-740, 2013. Google Scholar
  16. Thomas Place and Marc Zeitoun. Going higher in the first-order quantifier alternation hierarchy on words. In Proc. of ICALP'14, pages 342-353, 2014. Google Scholar
  17. Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. Log. Methods Comput. Sci., 12(1), 2016. Google Scholar
  18. Thomas G. Szymanski and John H. Williams. Noncanonical extensions of bottom-up parsing techniques. SIAM Journal on Computing, 5(2):231-250, 1976. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail