LIPIcs.ICALP.2017.117.pdf
- Filesize: 0.52 MB
- 13 pages
We investigate a subclass of languages recognized by vector addition systems, namely languages of nondeterministic Parikh automata. While the regularity problem (is the language of a given automaton regular?) is undecidable for this model, we surprisingly show decidability of the regular separability problem: given two Parikh automata, is there a regular language that contains one of them and is disjoint from the other? We supplement this result by proving undecidability of the same problem already for languages of visibly one counter automata.
Feedback for Dagstuhl Publishing