LIPIcs.CCC.2017.2.pdf
- Filesize: 0.59 MB
- 20 pages
We consider the graph k-colouring problem encoded as a set of polynomial equations in the standard way. We prove that there are bounded-degree graphs that do not have legal k-colourings but for which the polynomial calculus proof system defined in [Clegg et al. '96, Alekhnovich et al. '02] requires linear degree, and hence exponential size, to establish this fact. This implies a linear degree lower bound for any algorithms based on Gröbner bases solving graph k-colouring} using this encoding. The same bound applies also for the algorithm studied in a sequence of papers [De Loera et al. '08, '09, '11, '15] based on Hilbert's Nullstellensatz proofs for a slightly different encoding, thus resolving an open problem mentioned, e.g., in [De Loera et al. '09] and [Li et al. '16]. We obtain our results by combining the polynomial calculus degree lower bound for functional pigeonhole principle (FPHP) formulas over bounded-degree bipartite graphs in [Miksa and Nordström '15] with a reduction from FPHP to k-colouring derivable by polynomial calculus in constant degree.
Feedback for Dagstuhl Publishing