LIPIcs.APPROX-RANDOM.2017.14.pdf
- Filesize: 0.55 MB
- 17 pages
We give faster algorithms for producing sparse approximations of the transition matrices of k-step random walks on undirected and weighted graphs. These transition matrices also form graphs, and arise as intermediate objects in a variety of graph algorithms. Our improvements are based on a better understanding of processes that sample such walks, as well as tighter bounds on key weights underlying these sampling processes. On a graph with n vertices and m edges, our algorithm produces a graph with about nlog(n) edges that approximates the k-step random walk graph in about m + k^2 nlog^4(n) time. In order to obtain this runtime bound, we also revisit "density independent" algorithms for sparsifying graphs whose runtime overhead is expressed only in terms of the number of vertices.
Feedback for Dagstuhl Publishing