LIPIcs.APPROX-RANDOM.2017.38.pdf
- Filesize: 0.66 MB
- 21 pages
We give a poly(log(n),1/epsilon)-query adaptive algorithm for testing whether an unknown Boolean function f:{-1, 1}^n -> {-1, 1}, which is promised to be a halfspace, is monotone versus epsilon-far from monotone. Since non-adaptive algorithms are known to require almost Omega(n^{1/2}) queries to test whether an unknown halfspace is monotone versus far from monotone, this shows that adaptivity enables an exponential improvement in the query complexity of monotonicity testing for halfspaces.
Feedback for Dagstuhl Publishing