Charting the Replica Symmetric Phase

Authors Amin Coja-Oghlan, Charilaos Efthymiou, Nor Jaafari, Mihyun Kang, Tobias Kapetanopoulos



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2017.40.pdf
  • Filesize: 0.61 MB
  • 17 pages

Document Identifiers

Author Details

Amin Coja-Oghlan
Charilaos Efthymiou
Nor Jaafari
Mihyun Kang
Tobias Kapetanopoulos

Cite As Get BibTex

Amin Coja-Oghlan, Charilaos Efthymiou, Nor Jaafari, Mihyun Kang, and Tobias Kapetanopoulos. Charting the Replica Symmetric Phase. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 40:1-40:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017) https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.40

Abstract

Random graph models and associated inference problems such as the stochastic block model play an eminent role  in computer science, discrete mathematics and statistics. Based on non-rigorous arguments physicists predicted the existence of a generic phase transition  that separates a "replica symmetric phase" where statistical inference is impossible  from a phase where the detection of the "ground truth" is information-theoretically possible.

In this paper we  prove a contiguity result that shows that detectability is indeed impossible within the replica-symmetric phase for a broad class of models. In particular, this implies the detectability conjecture for the disassortative stochastic block model from [Decelle et al.: Phys Rev E 2011]. Additionally, we investigate key features of the replica symmetric phase such as the nature of point-to-set correlations (`reconstruction').

Subject Classification

Keywords
  • Random factor graph
  • bounds for condensation phase transition
  • Potts antiferromagnet
  • diluted k-spin model
  • stochastic block model

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Emmanuel Abbe. Community detection and stochastic block models: recent developments. CoRR, abs/1703.10146, 2017. URL: http://arxiv.org/abs/1703.10146.
  2. Emmanuel Abbe and Colin Sandon. Detection in the stochastic block model with multiple clusters: proof of the achievability conjectures, acyclic bp, and the information-computation gap. CoRR, abs/1512.09080, 2015. URL: http://arxiv.org/abs/1512.09080.
  3. Dimitris Achlioptas and Cristopher Moore. Random k-SAT: Two moments suffice to cross a sharp threshold. SIAM J. Comput., 36(3):740-762, 2006. Google Scholar
  4. Dimitris Achlioptas, Assaf Naor, and Yuval Peres. Rigorous location of phase transitions in hard optimization problems. Nature, 435(7043):759-764, 06 2005. Google Scholar
  5. Jess Banks, Cristopher Moore, Joe Neeman, and Praneeth Netrapalli. Information-theoretic thresholds for community detection in sparse networks. In Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016, pages 383-416, 2016. Google Scholar
  6. Victor Bapst and Amin Coja-Oghlan. Harnessing the bethe free energy. Random Struct. Algorithms, 49(4):694-741, 2016. Google Scholar
  7. Victor Bapst, Amin Coja-Oghlan, Samuel Hetterich, Felicia Raßmann, and Dan Vilenchik. The condensation phase transition in random graph coloring. Communications in Mathematical Physics, 341(2):543-606, 2016. Google Scholar
  8. Jean Barbier, Mohamad Dia, Nicolas Macris, Florent Krzakala, Thibault Lesieur, and Lenka Zdeborová. Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula. In Advances in Neural Information Processing Systems 29, pages 424-432. Curran Associates, Inc., 2016. Google Scholar
  9. Mohsen Bayati, David Gamarnik, and Prasad Tetali. Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. Ann. Probab., 41(6):4080-4115, 11 2013. Google Scholar
  10. Amin Coja-Oghlan. Phase transitions in discrete structures. In 7th European Congress of Mathematics, (In press) 2016. Google Scholar
  11. Amin Coja-Oghlan, Charilaos Efthymiou, Nor Jaafari, Mihyun Kang, and Tobias Kapetanopoulos. Charting the replica symmetric phase. CoRR, abs/1704.01043, 2017. URL: https://arxiv.org/abs/1704.01043.
  12. Amin Coja-Oghlan and Nor Jaafari. On the potts antiferromagnet on random graphs. Electr. J. Comb., 23(4):P4.3, 2016. Google Scholar
  13. Amin Coja-Oghlan, Florent Krzakala, Will Perkins, and Lenka Zdeborová. Information-theoretic thresholds from the cavity method. CoRR, abs/1611.00814, 2016. URL: http://arxiv.org/abs/1611.00814.
  14. Pierluigi Contucci, Sander Dommers, Cristian Giardinà, and Shannon Starr. Antiferromagnetic potts model on the Erdős-Rényi random graph. Communications in Mathematical Physics, 323(2):517-554, 2013. Google Scholar
  15. Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Physical Review E, 84(6):066106-, 12 2011. Google Scholar
  16. Yash Deshpande, Emmanuel Abbe, and Andrea Montanari. Asymptotic mutual information for the binary stochastic block model. In IEEE International Symposium on Information Theory, ISIT 2016, Barcelona, Spain, July 10-15, 2016, pages 185-189, 2016. Google Scholar
  17. Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 59-68, 2015. Google Scholar
  18. Ulisse Ferrari, Carlo Lucibello, Flaviano Morone, Giorgio Parisi, Federico Ricci-Tersenghi, and Tommaso Rizzo. Finite-size corrections to disordered systems on Erdős-Rényi random graphs. Physical Review B, 88(18):184201-, 11 2013. Google Scholar
  19. Silvio Franz, Michele Leone, Federico Ricci-Tersenghi, and Riccardo Zecchina. Exact solutions for diluted spin glasses and optimization problems. Physical Review Letters, 87(12:127209), 08 2001. Google Scholar
  20. Andreas Galanis, Daniel Stefankovic, and Eric Vigoda. Inapproximability for antiferromagnetic spin systems in the tree nonuniqueness region. J. ACM, 62(6):50:1-50:60, 2015. Google Scholar
  21. Antoine Gerschenfeld and Andrea Montanari. Reconstruction for models on random graphs. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings, pages 194-204, 2007. Google Scholar
  22. Andrei Giurgiu, Nicolas Macris, and Rüdiger L. Urbanke. Spatial coupling as a proof technique and three applications. IEEE Trans. Information Theory, 62(10):5281-5295, 2016. Google Scholar
  23. Francesco Guerra and Fabio Lucio Toninelli. The high temperature region of the Viana-Bray diluted spin glass model. Journal of Statistical Physics, 115(1):531-555, 2004. Google Scholar
  24. Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First steps. Social Networks, 5(2):109-137, 1983. Google Scholar
  25. Svante Janson. Random regular graphs: Asymptotic distributions and contiguity. Combinatorics, Probability & Computing, 4:369-405, 1995. Google Scholar
  26. Harry Kesten and Bernt P. Stigum. Additional limit theorems for indecomposable multidimensional galton-watson processes. Ann. Math. Statist., 37(6):1463-1481, 1966. URL: http://dx.doi.org/10.1214/aoms/1177699139.
  27. Florent Krzakała, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian, and Lenka Zdeborová. Gibbs states and the set of solutions of random constraint satisfaction problems. Proceedings of the National Academy of Sciences, 104(25):10318-10323, 06 2007. Google Scholar
  28. Marc Lelarge and Léo Miolane. Fundamental limits of symmetric low-rank matrix estimation. CoRR, abs/1611.03888, 2016. URL: https://arxiv.org/abs/1611.03888.
  29. Carlo Lucibello, Flaviano Morone, Giorgio Parisi, Federico Ricci-Tersenghi, and Tommaso Rizzo. Finite-size corrections to disordered ising models on random regular graphs. Physical Review E, 90(1):012146-, 07 2014. Google Scholar
  30. Laurent Massoulié. Community detection thresholds and the weak ramanujan property. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 694-703, 2014. Google Scholar
  31. Marc Mézard and Andrea Montanari. Information, physics and computation. Oxford University Press, 2009. Google Scholar
  32. Marc Mézard and Giorgio Parisi. The bethe lattice spin glass revisited. Eur. Phys. J. B, 20(2):217-233, 3 2001. Google Scholar
  33. Marc Mézard, Giorgio Parisi, and Ricardo Zecchina. Analytic and algorithmic solution of random satisfiability problems. Science, 297(5582):812, 08 2002. Google Scholar
  34. Marc Mézard, Federico Ricci-Tersenghi, and Riccardo Zecchina. Two solutions to diluted p-spin models and XORSAT problems. Journal of Statistical Physics, 111(3):505-533, 2003. Google Scholar
  35. Andrea Montanari, Ricardo Restrepo, and Prasad Tetali. Reconstruction and clustering in random constraint satisfaction problems. SIAM J. Discrete Math., 25(2):771-808, 2011. Google Scholar
  36. Cristopher Moore. The computer science and physics of community detection: Landscapes, phase transitions, and hardness. CoRR, abs/1702.00467, 2017. URL: http://arxiv.org/abs/1702.00467.
  37. Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold conjecture. CoRR, abs/1311.4115, 2013. URL: http://arxiv.org/abs/1311.4115.
  38. Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the planted partition model. Probability Theory and Related Fields, 162(3):431-461, 2015. URL: http://dx.doi.org/10.1007/s00440-014-0576-6.
  39. Paul Erdős and Alfred Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl, 5:17-61, 1960. Google Scholar
  40. Tom Richardson and Rüdiger Urbanke. Modern coding theory. Cambridge University Press, 2008. Google Scholar
  41. Robert W. Robinson and Nicholas C. Wormald. Almost all cubic graphs are hamiltonian. Random Struct. Algorithms, 3(2):117-126, 1992. Google Scholar
  42. Lenka Zdeborová and Florent Krzakala. Statistical physics of inference: thresholds and algorithms. Advances in Physics, 65(5):453-552, 2016. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail