LIPIcs.APPROX-RANDOM.2017.48.pdf
- Filesize: 0.55 MB
- 21 pages
In arithmetic circuit complexity the standard operations are +,x. Yet, in some scenarios exponentiation gates are considered as well. In this paper we study the question of efficiently evaluating a polynomial given an oracle access to its power. Among applications, we show that: * A reconstruction algorithm for a circuit class c can be extended to handle f^e for f in C. * There exists an efficient deterministic algorithm for factoring sparse multiquadratic polynomials. * There is a deterministic algorithm for testing a factorization of sparse polynomials, with constant individual degrees, into sparse irreducible factors. That is, testing if f = g_1 x ... x g_m when f has constant individual degrees and g_i-s are irreducible. * There is a deterministic reconstruction algorithm for multilinear depth-4 circuits with two multiplication gates. * There exists an efficient deterministic algorithm for testing whether two powers of sparse polynomials are equal. That is, f^d = g^e when f and g are sparse.
Feedback for Dagstuhl Publishing