LIPIcs.CSL.2017.26.pdf
- Filesize: 0.63 MB
- 19 pages
We show that the class of chordal claw-free graphs admits LREC=-definable canonization. LREC= is a logic that extends first-order logic with counting by an operator that allows it to formalize a limited form of recursion. This operator can be evaluated in logarithmic space. It follows that there exists a logarithmic-space canonization algorithm for the class of chordal claw-free graphs, and that LREC= captures logarithmic space on this graph class. Since LREC= is contained in fixed-point logic with counting, we also obtain that fixed-point logic with counting captures polynomial time on the class of chordal claw-free graphs.
Feedback for Dagstuhl Publishing