Refinement for Signal Flow Graphs

Authors Filippo Bonchi, Joshua Holland, Dusko Pavlovic, Pawel Sobocinski



PDF
Thumbnail PDF

File

LIPIcs.CONCUR.2017.24.pdf
  • Filesize: 0.79 MB
  • 16 pages

Document Identifiers

Author Details

Filippo Bonchi
Joshua Holland
Dusko Pavlovic
Pawel Sobocinski

Cite As Get BibTex

Filippo Bonchi, Joshua Holland, Dusko Pavlovic, and Pawel Sobocinski. Refinement for Signal Flow Graphs. In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 24:1-24:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017) https://doi.org/10.4230/LIPIcs.CONCUR.2017.24

Abstract

The symmetric monoidal theory of Interacting Hopf Algebras provides a sound and complete axiomatisation for linear relations over a given field. As is the case for ordinary relations, linear relations have a natural order that coincides with inclusion. In this paper, we give a presentation for this ordering by extending the theory of Interacting Hopf Algebras with a single additional inequation. We show that the extended theory gives rise to an abelian bicategory—a concept due to Carboni and Walters—and highlight similarities with the algebra of relations. Most importantly, the ordering leads to a well-behaved notion of refinement for signal flow graphs.

Subject Classification

Keywords
  • Signal flow graphs
  • refinement
  • operational semantics
  • string diagrams
  • symmetric monoidal inequality theory

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Rob Arthan, Ursula Martin, and Paulo Oliva. A Hoare logic for linear systems. Form Asp Comp, 25:345-363, 2013. Google Scholar
  2. Sheldon Axler. Linear Algebra Done Right. Springer, 2nd edition, 1997. Google Scholar
  3. John C. Baez and Jason Erbele. Categories in control. Technical report, arXiv:1405.6881, 2014. Google Scholar
  4. Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A categorical semantics of signal flow graphs. In Concurrency Theory - 25th International Conference, (CONCUR 2014), volume 8704 of LNCS, pages 435-450. Springer, 2014. URL: http://dx.doi.org/10.1007/978-3-662-44584-6_30.
  5. Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Interacting bialgebras are Frobenius. In Foundations of Software Science and Computation Structures - 17th International Conference, (FOSSACS 2014), number 8412 in LNCS. Springer, 2014. Google Scholar
  6. Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Full Abstraction for Signal Flow Graphs. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL '15, pages 515-526, New York, New York, USA, 2015. ACM Press. URL: http://dx.doi.org/10.1145/2676726.2676993.
  7. Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Interacting Hopf algebras. Journal of Pure and Applied Algebra, 221(1):144-184, mar 2017. URL: http://dx.doi.org/10.1016/j.jpaa.2016.06.002.
  8. Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. The Calculus of Signal Flow Diagrams I: Linear relations on streams. Information and Computation, 252(v):2-29, feb 2017. URL: http://dx.doi.org/10.1016/j.ic.2016.03.002.
  9. Roberto Bruni, Ivan Lanese, and Ugo Montanari. A basic algebra of stateless connectors. Theor. Comput. Sci., 366:98-120, 2006. Google Scholar
  10. Roberto Bruni, Hernán C. Melgratti, Ugo Montanari, and Paweł Sobociński. Connector algebras for C/E and P/T nets' interactions. Log. Meth. Comput. Sci., 9(3), 2013. URL: http://dx.doi.org/10.2168/LMCS-9(3:16)2013.
  11. Aurelio Carboni and Robert Frank Carslaw Walters. Cartesian bicategories I. Journal of Pure and Applied Algebra, 49(1–2):11-32, nov 1987. URL: http://dx.doi.org/10.1016/0022-4049(87)90121-6.
  12. Bob Coecke and Ross Duncan. Interacting quantum observables. In ICALP`08, pages 298-310, 2008. Google Scholar
  13. Brendan Fong. The Algebra of Open and Interconnected Systems. arXiv.org, page 230, 2016. URL: http://arxiv.org/abs/1609.05382.
  14. Bjarni Jónsson and Alfred Tarski. Representation problems for relation algebras. Bulletin of the American Mathematical Society, 54(1):80-80, 1948. Google Scholar
  15. Gregory M Kelly and Miguel L Laplaza. Coherence for compact closed categories. Journal of Pure and Applied Algebra, 19:193-213, 1980. Google Scholar
  16. Yves Lafont. Towards an algebraic theory of boolean circuits. J Pure Appl Alg, 184:257-310, 2003. Google Scholar
  17. Bhagwandas Pannalal Lathi. Signal processing and linear systems. Oxford university press New York, 1998. Google Scholar
  18. Jan J M M Rutten. A tutorial on coinductive stream calculus and signal flow graphs. Theoretical Computer Science, 343(3):443-481, oct 2005. URL: http://dx.doi.org/10.1016/j.tcs.2005.06.019.
  19. Claude E. Shannon. The theory and design of linear differential equation machines. Technical report, National Defence Research Council, 1942. Google Scholar
  20. Laurence Sigler. Fibonacci’s Liber Abaci: A Translation into Modern English of Leonardo Pisano’s Book of Calculation. Springer, 2002. Google Scholar
  21. Paweł Sobociński. Nets, relations and linking diagrams. In Algebra and Coalgebra in Computer Science - 5th International Conference, (CALCO 2013), volume 8089 of LNCS, pages 282-298. Springer, 2013. Google Scholar
  22. Paweł Sobociński. Graphical linear algebra. (blog series), 2015. URL: https://GraphicalLinearAlgebra.net.
  23. Jan C. Willems. The behavioural approach to open and interconnected systems. IEEE Contr. Syst. Mag., 27:46-99, 2007. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail