LIPIcs.ESA.2017.2.pdf
- Filesize: 0.52 MB
- 13 pages
We study permuting and batched orthogonal geometric reporting problems in the External Memory Model (EM), assuming indivisibility of the input records. Our main results are twofold. First, we prove a general simulation result that essentially shows that any permutation algorithm (resp. duplicate removal algorithm) that does alpha*N/B I/Os (resp. to remove a fraction of the existing duplicates) can be simulated with an algorithm that does alpha phases where each phase reads and writes each element once, but using a factor alpha smaller block size. Second, we prove two lower bounds for batched rectangle stabbing and batched orthogonal range reporting queries. Assuming a short cache, we prove very high lower bounds that currently are not possible with the existing techniques under the tall cache assumption.
Feedback for Dagstuhl Publishing