LIPIcs.DISC.2017.15.pdf
- Filesize: 0.87 MB
- 30 pages
In this paper we present distributed property-testing algorithms for graph properties in the CONGEST model, with emphasis on testing subgraph-freeness. Testing a graph property P means distinguishing graphs G = (V,E) having property P from graphs that are epsilon-far from having it, meaning that epsilon|E| edges must be added or removed from G to obtain a graph satisfying P. We present a series of results, including: - Testing H-freeness in O(1/epsilon) rounds, for any constant-sized graph H containing an edge (u,v) such that any cycle in H contain either u or v (or both). This includes all connected graphs over five vertices except K_5. For triangles, we can do even better when epsilon is not too small. - A deterministic CONGEST protocol determining whether a graph contains a given tree as a subgraph in constant time. - For cliques K_s with s >= 5, we show that K_s-freeness can be tested in O(m^(1/2-1/(s-2)) epsilon^(-1/2-1/(s-2))) rounds, where m is the number of edges in the network graph. - We describe a general procedure for converting epsilon-testers with f(D) rounds, where D denotes the diameter of the graph, to work in O((log n)/epsilon)+f((log n)/epsilon) rounds, where n is the number of processors of the network. We then apply this procedure to obtain an epsilon-tester for testing whether a graph is bipartite and testing whether a graph is cycle-free. Moreover, for cycle-freeness, we obtain a corrector of the graph that locally corrects the graph so that the corrected graph is acyclic. Note that, unlike a tester, a corrector needs to mend the graph in many places in the case that the graph is far from having the property. These protocols extend and improve previous results of [Censor-Hillel et al. 2016] and [Fraigniaud et al. 2016].
Feedback for Dagstuhl Publishing