Timed Network Games

Authors Guy Avni, Shibashis Guha, Orna Kupferman



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2017.37.pdf
  • Filesize: 487 kB
  • 16 pages

Document Identifiers

Author Details

Guy Avni
Shibashis Guha
Orna Kupferman

Cite As Get BibTex

Guy Avni, Shibashis Guha, and Orna Kupferman. Timed Network Games. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 37:1-37:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017) https://doi.org/10.4230/LIPIcs.MFCS.2017.37

Abstract

Network games are widely used as a model for selfish resource-allocation problems. In the classical model, each player selects a path connecting her source and target vertex. The cost  of traversing an edge depends on the number of players that traverse it. Thus, it abstracts the fact that different users may use a resource at different times and for different durations, which plays an important role in defining the costs of the users in reality. For example, when transmitting packets in a communication network, routing traffic in a road network, or processing a task in a production system, the traversal of the network involves an inherent delay, and so sharing and congestion of resources crucially depends on time.

We study timed network games, which add a time component to network games. Each vertex v in the network is associated with a cost function, mapping the load on v to the price that a player pays for staying in v for one time unit with this load. In addition, each edge has a guard, describing time intervals in which the edge can be traversed, forcing the players to spend time on vertices. Unlike earlier work that add a time component to network games, the time in our model is continuous and cannot be discretized. In particular, players have uncountably many strategies, and a game may have uncountably many pure Nash equilibria.
We study properties of timed network games with cost-sharing or congestion cost functions: their stability, equilibrium inefficiency, and complexity. In particular, we show that the answer to the question whether we can restrict attention to boundary strategies, namely ones in which edges are traversed only at the boundaries of guards, is mixed.

Subject Classification

Keywords
  • Network Games
  • Timed Automata
  • Nash Equilibrium
  • Equilibrium Inefficiency

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail